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Abstract. We study simple, properly ordered nonexpansive Bratteli-Vershik

(BV ) systems. Correcting a mistake in an earlier paper, we redefine the classes

standard nonexpansive (SNE) and strong standard nonexpansive (SSNE).
We define also the classes of very well timed and well timed systems, their

opposing classes of untimed and very untimed systems (which feature, as sub-

classes of “Case (2)”, in the work of Downarowicz and Maass as well as Hoynes
on expansiveness of BV systems of finite topological rank), and several related

classes according to the existence of indistinguishable pairs (of some “depth”)

and their synchronization (“common cuts”). We establish some properties of
these types of systems and some relations among them. We provide several rel-

evant examples, including a problematic one that is conjugate to a well timed

system while also (vacuously) in the classes “Case (2)”. We prove that the class
of all simple, properly ordered nonexpansive BV systems is the disjoint union

of the ones conjugate to well timed systems and those conjugate to untimed
systems, thereby showing that nonexpansiveness in BV systems arises in one

of two mutually exclusive ways.

1. Introduction. Bratteli-Vershik (BV ) systems present visually and combinato-
rially the hierarchical mechanisms that drive measure-preserving and topological
dynamical systems. Vershik [14,15] and Herman-Putnam-Skau [12] showed that ev-
ery measure-preserving system and every minimal homeomorphism on the Cantor
set is isomorphic (in the appropriate sense) to a BV system. As with any system,
it is useful, when possible, to code the dynamics as a subshift, so that the meth-
ods of symbolic dynamics and formal languages can be brought into action. This
is possible exactly when the system is expansive (in the topological setting), or
essentially expansive (in the measure-preserving setting; see [1]). There has been
considerable progress on the question of when BV systems are expansive or not,
or when a sequence of morphisms is recognizable: [1–3, 6, 8, 9], for example. Here
we explore the reasons why a BV system might be nonexpansive. We focus on
BV systems that are simple (so the topological dynamical system is minimal) and
properly ordered (there is a unique minimal path and a unique maximal path), but
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not necessarily of finite topological rank (conjugate to one with a bounded number
of vertices per level). Our main result, Theorem 5.15, states that for such systems
nonexpansiveness arises in one of two mutually exclusive ways, to which we assign
the terms well timed (Definition 5.3 (1)) and untimed (Definition 5.3 (5)).

Many nonexpansive systems are conjugate to odometers, which can be repre-
sented by diagrams of bounded width, or seem to be similar to the Gjerde-Johansen
example [11, Figure 4], which has unbounded width and is not conjugate to an
odometer. For brevity we will refer to this system, which motivated much of this
investigation, as the GJ example. In an earlier paper [8], abstracting key properties
of this example, the authors (including us) proposed a class of systems (standard
nonexpansive, SNE) as a model for how nonexpansivesness can arise in BV sys-
tems. Proposition 5.4 of [8] asserted that every standard nonexpansive system,
according to the definition given there, has unbounded width and cannot be conju-
gate to an odometer. Example 3.8 below shows that neither of these properties is
guaranteed under the old definition of SNE; that definition was flawed, being based
on the assumption that two paths with the same sequence of ordinal edge labels
had to move simultaneously to new vertices. We cannot even guarantee that SNE
systems, as originally defined, are nonexpansive. Here we correct those mistakes
by providing a new definition of SNE (Definition 3.5), as well as its invariant ver-
sion SSNE (Definition 3.6). Nonexpansiveness now follows from Proposition 3.9,
and Proposition 3.12 and Theorem 3.13 show that any system satisfying the new
definition of SNE is not conjugate to any odometer and has unbounded width.

In Section 4 we study the GJ example in detail, to prove that it is standard non-
expansive and to show how a slight modification ruins this property. For the latter,
we use the technique of splitting j-symbols from [6] and prove that the 2-coding
of every path in the GJ example is aperiodic (Observation 4.4) and the related
fact that a certain factor system gives rise to a recognizable family of morphisms
(Observation 4.5).

To understand the possible sources of nonexpansiveness, we define two types of
systems, well timed or untimed, as well as their subclasses very well timed and very
untimed (Definition 5.3). The GJ example is very well timed. The untimed systems
are related to what Downarowicz and Maass called “Case (2)” in [6]. Our Theorem
5.15 states that the family of all nonexpansive systems is the disjoint union of the
class of systems which are conjugate to some well timed system and the class of
those conjugate to some untimed system. Proving this theorem requires a thorough
study of these and related properties, which we carry out in Section 5. Hoynes [13]
used a slightly different “Case (2)”, and both [6] and [13] used telescoping to arrive
at stronger properties. Definition 5.3 states the definitions of these properties and
a few of the others that would arise from permuting or negating the quantifiers
concerning depth and cuts. Proposition 5.7 clarifies what happens to depth and cuts
under telescoping. Working towards the proof of Theorem 5.15, we characterize in
Proposition 5.10 the systems that are conjugate to some well timed system as those
that are “weakly well timed”. We establish relations among these various types of
systems. Example 5.6 shows that odometers can be either untimed but not very
untimed, or very untimed, depending on how they are presented. Example 5.13 is a
system that is both weakly well timed and (vacuously) satisfies the property in each
“Case (2)”; this indicates that, as written, the proofs of the main theorem of [6,13]
are slightly incomplete.
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In Section 6 we describe the possible diagrams for bounded width very untimed
systems: they are all “kite shaped”, like the example in Figure 3. In the final section
we mention several questions suggested by the foregoing, for example whether there
are any untimed systems that have unbounded width and whether every well timed
system is conjugate to a system that is in SNE.

2. Some definitions and notation. We deal with Bratteli-Vershik (BV ) systems
(X,T ). Each system is built on an ordered Bratteli diagram, which is a countably
infinite, directed, graded, graph. For each n = 0, 1, 2, . . . there is a finite nonempty
set of vertices Vn. The set V0 consists of a single vertex, called the “root”. The set
of edges is the disjoint union of finite nonempty sets En, n ≥ 0, with En denoting
the set of edges with source in Vn and target in Vn+1. We assume that every vertex
has at least one outgoing edge, and every vertex other than the root has at least
one incoming edge. There can be multiple edges between pairs of vertices. The
space X is the set of infinite paths (sequences x = x0x1 . . . , each xi denoting an
edge from level i to level i+ 1) starting at the root at level i = 0. For a path x we
denote by vi(x) the vertex of the path at level i. If i < j, we will say that level j
is after or later than level i, which is earlier or before level j. Since diagrams are
often drawn with later levels below earlier ones, we may sometimes say that level j
is below level i if i < j and use up and down to refer to relative positions in such
diagrams. The space X is a compact metric space when we specify that two paths
have distance 1/2n if they agree from levels 0 to n and disagree leaving level n. To
avoid degenerate situations we assume that X is homeomorphic to the Cantor set.

The edges entering each vertex are totally ordered by assigning an ordinal in
{1, 2, . . . } as a label to each edge. This yields a partial order on the set of infinite
paths as follows. Two paths x and y are comparable in case they are cofinal: there
is a smallest N > 0 such that xn = yn for all n ≥ N . In this case vN (x) = vN (y),
and xN−1 ̸= yN−1; we agree that x < y if xN−1 < yN−1, and x > y if not. The
set of minimal paths, meaning those all of whose edges are minimal into all of their
vertices, will be denoted by Xmin, and similarly the set of maximal paths will be
denoted by Xmax. The Vershik map T is defined from the set of nonmaximal paths
to the set of nonminimal paths by mapping each path x to its successor, the smallest
y > x. We assume that the diagrams are properly ordered, which means that there is
a unique minimal path and a unique maximal path. This implies that the diagram
is perfectly ordered: the Vershik map extends to a homeomorphism T on the set
X of all infinite paths from the root by mapping the unique maximal path to the
unique minimal path. (See [4, 5]).

The system is called minimal if every orbit is dense, and it is called simple if it
has a telescoping for which there are complete connections between adjacent levels.
It can be proved that a properly ordered system is minimal if and only if it is simple.

We will say that two systems are conjugate if there is an equivariant homeomor-
phism from one to the other that sends minimal points to minimal points. The
relation of diagram equivalence is the one generated by graph isomorphism and
telescoping. Herman-Putnam-Skau [12, Section 4] (see also [10, p. 70 and p. 72,
Theorem 3.6]) characterized conjugacy of minimal pointed topological dynamical
systems defined by properly ordered (called there “essentially simple”) BV dia-
grams (with unique minimal points), as follows: two systems are conjugate if and
only if their diagrams are equivalent, and this happens if and only if there exists a
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diagram Z that telescopes on odd levels to a telescoping of one of the diagrams and
on even levels to a telescoping of the other.

We emphasize that in the following, unless stated otherwise, every system is a
BV system defined by a properly ordered, simple diagram, and every conjugacy is
an equivariant homeomorphism between two such systems that sends the unique
minimal point in one system to the unique minimal point in the other (but we
may include reminders about these hypotheses anyway). For convenience we may
use the same symbol, such as X or Y , to denote a diagram as well as the system
that it defines, and we may also use the same symbol, such as T , for Vershik maps
on different systems, or suppress it entirely. By “pair” we mean a pair of distinct
elements, unless stated otherwise. The width of a level is the number of vertices at
that level. Recall that in [6] the topological rank of a system (X,T ) is defined to be
the minimum among all BV systems (Y, T ) conjugate to (X,T ) of the supremum
of the widths of the levels of (Y, T ). For further terminology and background,
see [7, 8, 10,12] and the references cited there.

For each k ≥ 1 denote by Ak the finite alphabet whose elements are the finite
paths (segments, strings of edges) from the root to level k. For each a ∈ Ak, the set
[a] = {x ∈ X : x0 . . . xk−1 = a} is a clopen cylinder set, and Pk = {[a] : a ∈ Ak} is
a partition of X into clopen sets. The map πk : X → AZ

k is defined by (πkx)n = a
if and only if Tnx ∈ [a]. The doubly infinite sequence πkx is called the k-coding
of x. Let Σk = πkX, and denote by σ the shift transformation on AZ

k . Then
πk : (X,T ) → (Σk, σ) is a factor map: it is continuous, onto, and it commutes with
the transformations.

Definition 2.1. For each vertex v at level k ≥ 1, denote by P (v) the set of paths
from the root to v. The elements of P (v) are assigned ordinal path labels according
to the lexicographic ordering defined by the edge ordering. Define the dimension of
the vertex v to be dim v = |P (v)|, and concatenate the elements of P (v), in their
lexicographic order, as p1 . . . pdim v (so that [pj+1] = T [pj ] for j = 1, . . . ,dim v− 1).
We call the string p1 . . . pdim v on symbols from the alphabet Ak the k-basic block
at v and denote it by Bk(v). Each path from the root to level k determines, by
truncation, for each i < k a unique path from the root to level i, so there is a
natural factor map Ak → Ai which converts Bk(v) to a string, which we denote by
Bi(v) and call the i-basic block at v, of the same length on the alphabet Ai.

Definition 2.2. The coding by vertices at level j < n of a vertex w at level n,
denoted by Cj(w), is defined as follows. List in their order in the diagram the paths
entering w from vertices at level j as {p1, . . . , pm} and denote the source of pi by
vi, i = 1, . . . ,m. Then Cj(w) = v1 . . . vm. (For j = n − 1, this is the “morphism
read on Vn” in [7, p. 342]).

Definition 2.3. We say that a BV system is nonexpansive (abbreviated NE) if
for every k ≥ 1 there exists a pair of paths with the same k-coding (by finite paths
from level 0 to level k).

Thus a system is expansive if and only if there is a k ≥ 1 such that the map
πk : (X,T ) → (Σk, σ) is injective (and hence a conjugacy with its image).

Definition 2.4. We say two paths x and x′ are depth k ≥ 0 if they have the same
k-coding but not the same (k + 1)-coding.

If two paths have the same k-coding, then they agree from the root to level k.
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For any pair of (distinct) paths x and x′ there exists a j such that x and x′ do not
have the same j-coding. Hence, telescoping can be used to convert a nonexpansive
BV system into one with the property that for every k ≥ 1 there exists a depth k
pair of paths.

Definition 2.5. We say two paths x and x′ have a (common) j cut if there is an
integer m such that the initial segments of Tmx and Tmx′ are minimal into level j.
Then we say that the pair has a cut at time m.

We say that two paths differ at level j if they follow different edges into level
j. Note that if two paths x and x′ differ at level k + 1 and have a k + 1 cut, then
m can be chosen so that Tmx and Tmx′ are minimal into distinct vertices at level
k + 1. (For detailed explanation, see top of page 7 in [13]).

3. Standard nonexpansive systems.

Definition 3.1. Let k ≥ 1 and n > k. We say that two vertices v, w at level
n are k-equivalent, and write v ∼k w, if they are strongly uniformly ordered with
respect to level k, meaning that the set of paths from vertices at level k to v is order
isomorphic with the set of paths from vertices at level k to w. Equivalently, the
k-basic blocks at v and w are identical. (In [8] a uniformly ordered level n+ 1 was
defined to be a level all of whose vertices had n-basic blocks that were powers of a
single block on the alphabet of paths from the root to level n.)

Any pair of vertices that is (k+1)-equivalent is also k-equivalent. (If v and w at
level n > k + 1 have equal basic blocks in terms of the paths from the root to level
k + 1, when these blocks are rewritten in terms of paths to level k the results will
still be identical.)

Definition 3.2. We say that two paths x and x′ are k-equivalent at level n if we
have vn(x) ∼k vn(x

′) and moreover their paths from the root to level n have the
same ordinal path label. We say x and x′ are k-equivalent, and write x ∼k x′, if
they agree from the root to level k and, for all n > k, x and x′ are k-equivalent at
level n.

Remark 3.3. Recall that for a path x and n ≥ k ≥ 1, the k-basic block Bk(vn(x))
lists in their assigned order the truncations to levels from 0 to k of paths from the
root to vn(x), say as q1 . . . qdim(vn(x)) (see Definition 2.1). Suppose that i is the
index in [1,dim(vn(x))] for which qi is the initial segment of x from the root to level
n. This information can be conveyed by writing out the string Bk(vn(x)) with a
“dot” immediately preceding qi. For example, if x follows only minimal edges to
level n, then Bk(vn(x)) = .q1 . . . qdim(vn(x)). Two paths x, x′ are k-equivalent at
level n > k if Bk(vn(x)) = Bk(vn(x

′)) and, informally, these two basic blocks have
the “dot” in the same place.

Example 3.4. We illustrate some of these definitions in Figure 1. The diagram
D in this figure has two vertices, a and b, at level 1 and three vertices at every
level j ≥ 2. We identify each vertex at level 1 with the path of length 1 (edge)
from the root to that vertex. The diagram is stationary after level 2. Each vertex
is connected to every vertex at the previous level by exactly one edge. We shall
consider two different orderings on D.

First, for all j ≥ 2 and every vertex v at level j, order the edges with target v in
increasing order from left to right. Then for any k < j, all pairs of vertices at level
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a b

Figure 1. An illustration of some of the definitions

j are strongly uniformly ordered with respect to level k.
The 1-basic blocks for the two paths x and x′ (indicated by the bold and dashed

paths, respectively) at the first four levels after the root are as follows.

B1(v1(x)) = .a

B1(v1(x
′)) = .a

B1(v2(x)) = .ab

B1(v2(x
′)) = .ab

B1(v3(x)) = ab.abab

B1(v3(x
′)) = abab.ab

B1(v4(x)) = (ab)3ab.abab(ab)3

B1(v4(x
′)) = (ab)3(ab)3abab.ab

(1)

In fact, at all levels the 1-basic blocks are the same for both paths. However,
after level 2, the dots for the respective paths are not in the same place of their
common basic block. Therefore, x and x′ are not 1-equivalent. (Hence, they are
not k-equivalent for any k ≥ 1.)

Note: Suppose that at all levels j ≥ 2, we add a fourth vertex v(j, 4) that is
connected to every vertex at level j − 1 by a single edge and then order the edges
with target v(j, 4) from left to right. In the new diagram, x′ would no longer be
maximal after level 2. In other words, x′ would no longer be in the orbit of a maximal
path. In this case, the 1-coding of both paths would be the same bi-infinite periodic
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sequence (ab)∞.ab(ab)∞. (This shows that two paths with the same 1-coding need
not be 1-equivalent.) In fact, x and x′ would be depth 2 with a common 1-cut.
While instructional, drawing such a diagram with all its intersecting edges is messy.
So we chose to illustrate k-equivalence, or lack thereof, with a simpler diagram.

We now consider a different ordering on D that we obtain from the ordering
considered above by swapping labels 2 and 3 on edges with target v(j, 3), for all
j > 2. This gives

B1(v1(x)) = B1(v1(x
′)) = .a

B1(v2(x)) = B1(v2(x
′)) = .ab

B1(v3(x)) = B1(v3(x
′)) = ab.abab

B1(v4(x)) = B1(v4(x
′)) = (ab)3ab.abab(ab)3

(2)

In fact, with this new ordering on D the 1-basic blocks at every level are the same
with the dot in the same place for both paths. Therefore, x and x′ are 1-equivalent
with the same 1-coding (ab)∞.ab(ab)∞.

Definition 3.5. We say that a nonexpansive BV system is standard nonexpansive
(SNE) if for every k ≥ 1 there is a pair of k-equivalent paths.

Definition 3.6. We say that two paths x and x′ are k-same, and write x ≈k x′, if
T jx ∼k T jx′ for all j ∈ Z. We say that a system is strong standard nonexpansive
(SSNE) if for every k ≥ 1 there is a pair of distinct k-same paths.

Remark 3.7. The paper [8] introduced a different definition of standard nonex-
pansive, which we here call the “old definition”: For every k there should exist a
pair of paths that agree from the root to a level n > k, have the same sequence
of edge labels, and have the same k-basic blocks at all levels after k. In the new
definition (3.5) we replace the requirement that the sequences of edge labels be the
same with the stronger requirement that the two paths always have the “dot” in
the same place of their equal k-basic blocks.

Proposition 5.4 of [8] asserted that every standard nonexpansive system, accord-
ing to the definition given there, has unbounded width. The following example
shows that this is not correct. In Theorem 3.13 below we show that the new defi-
nition of SNE given here does suffice to guarantee unbounded width.

Example 3.8. Figure 2 shows part of a diagram with ordinal labels on edges of
two paths (x and x′) indicated by small numbers. The figure displays the codings
of vertices by vertices at the previous level, which indicate the connections and edge
orderings. This example satisfies the old definition of SNE, but not the new one.
It has bounded width and is conjugate to an odometer (since after telescoping to
the levels with exactly two vertices, all levels are uniformly ordered, see [8]); so it is
a counterexample to Prop 5.4 of [8] and the assertion in its proof that any system
conjugate to an odometer cannot have pairs of paths with the same edge labels.

In this example (see Figure 2), for which levels 0−2 are not shown, the dark path
(x) and the dotted path (x′) are identical from the root to the vertex labeled b at
level 3, where they diverge. They continue below with the same sequence of ordinal
edge labels. At level 1 (not shown) there are two vertices, u and v, and at level 2
there are four vertices, with codings by vertices of the previous level u2, u3, uv2, v2u.
The vertices u and v connect to a and b via edges in the order that leads to identical
codings by vertices u2uvvu3 at a and u3vvuu2 at b. At all levels 2 and later, the
paths have identical codings by vertices on the symbols u and v, but the “dots” for
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the two paths are in different places after level 4. After level 0, the diagram repeats
levels and edges with period two, so it has bounded width.

Thus these two paths have the same sequence of edge labels and the same basic
blocks at corresponding vertices, so they conform to the old definition of SNE. But
the dots in their basic blocks are not in the same place, so they do not satisfy the
new definition.

To find such pairs of paths for values of k larger than 1, use the periodicity of
the diagram. For example, to deal with 1 replaced by 3 (and hence also by 2), we
may form a pair of paths that is identical from the root to the vertex labeled B at
level 5, where it splits into two paths following the same sequence of edge labels as
before (22121212 . . . ). These paths always enter vertices with the same codings by
level 3 vertices a, b, but not with the dot in the same place (after level 6). Then for
3 replaced by 5 (and hence also 4), take two paths that follow identical edges from
the root to the vertex D at level 7, where they split and follow the same sequence of
edges 22121 . . . . These paths always enter vertices with the same codings by level
5 vertices A,B, and hence also by the vertices at level 4, but not with the dots in
the same place. Etc.

The strict synchronizing structure of k-equivalent pairs of paths guarantees that
they cannot be separated by their k-codings.

Proposition 3.9. In any system, if two paths are k-equivalent at infinitely many
levels, then they have the same k-codings.

Proof. Suppose that x, x′ is a pair of distinct paths for which there is an infinite
increasing sequence (nj) such that for each j the paths x, x′ are k-equivalent at level
nj . Their (identical) k-basic blocks at their nj-level vertices vnj

(x), vnj
(x′) have

lengths increasing to infinity, j ≥ 1. If the lengths of the segments of the blocks
both to the left and right of their dots increase unboundedly, x and x′ will have
identical k-codings. Suppose that the segments to one side of the dot, for example
the left, stay bounded. Then there are m ∈ [0,∞) and j0 such that the segment to
the left has length m at all levels nj for j ≥ j0. At these levels T−mx, T−mx′ are
minimal paths from the root to the vertices vnj

(x), vnj
(x′). Since nj is arbitrarily

large, T−mx and T−mx′ consist entirely of minimal edges, so both equal the minimal
path xmin, contradicting our assumption that the paths are distinct. Analogously,
using uniqueness of the maximal path, the segments of the basic blocks to the right
cannot stay bounded.

Corollary 3.10. For systems under our standing assumptions (BV systems, each
defined by its own simple, properly ordered diagram), standard nonexpansive implies
nonexpansive.

Proposition 3.11. If two paths x and x′ are k-equivalent, then for every n > k
they have an n cut, and there is a j ≥ k such that they are depth j. Hence, in any
system, if two k-equivalent paths are depth n ≥ k, then they have an n+ 1 cut.

Proof. For any path and any n > k, the position of the dot in the k-basic block
at level n represents the smallest number of applications of T−1 applied to that
path necessary to produce a path that is minimal into level n. Since x and x′ are
k-equivalent, the dot is in the same position for their k-basic blocks at level n, so
the paths x and x′ have an n cut.
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a = u2uvvu3 b = u3vvuu2

a2 a3 a.bb b.ba

A = a2a.bba3 B = a3b.baa2

A2 A3 ABB BBA

C D

C2 C3 CDD DDC

2 2

2 2

1 1

2 2

1 1

Figure 2. Part of a diagram whose system satisfies the old defi-
nition of SNE but not the new one

Given paths x and x′ in a system that are k-equivalent, by Proposition 3.9 they
have the same k-codings. There exists a largest j ≥ k such that for all m ∈ Z, Tmx
and Tmx′ agree to level j. It follows that x and x′ are depth j.

Note that the converse of each statement in Proposition 3.11 is not true: it can
happen for a depth k pair and some n > k that the k-basic block at vn(x) is a proper
prefix of the k-basic block at vn(x

′), and then the paths would not be k-equivalent
but could still have an n cut.

The following Proposition will be extended in Theorem 5.14.

Proposition 3.12. No SNE system can be conjugate to any odometer.
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Proof. Suppose that (X,T ) is a system that is conjugate to an odometer. By [8,
Theorem 5.3] it has a telescoping that has infinitely many uniformly ordered levels.
We claim that for k = 1 no pair in the telescoped system can be k-equivalent, so
the telescoped system in fact cannot be SNE.

Suppose that x, x′ is a 1-equivalent pair in the telescoped system. Since x ̸= x′

but their first edges are equal, x0 = x′
0, the pair first disagrees at some level j > 1,

that is to say, they follow different edges from level j − 1 to level j. If they enter
the same vertex at level j along these different edges, they cannot have their dots
in the same place. So the paths are at different vertices at level j, and then, by
induction, they must be at different vertices at each level n for all n ≥ j.

Look at the first uniformly ordered level n > j. At the vertices vn(x) and vn(x
′),

because of 1-equivalence we have (n− 1)-basic blocks of the same length, and then
because of uniform order these (n − 1)-basic blocks are equal. Since x, x′ are at
different vertices at level n− 1, their dots are at different places in the (n− 1)-basic
blocks at vn(x), vn(x

′). When these (n − 1)-basic blocks are expanded to 1-basic
blocks, the dots for x, x′ will be at different places, contradicting 1-equivalence of x
and x′.

The following Theorem follows directly from the preceding Proposition combined
with the main result of [6], but we give a direct proof here in order to re-establish
Proposition 5.4 of [8] in our context, with the new definition of SNE.

Theorem 3.13. SNE implies unbounded width.

Proof. Starting with j0 = 1, using Proposition 3.11, we can find two paths x(0), y(0)

that are j0-equivalent and follow different edges into some level j1 > j0. As above,
because they are j0-equivalent, they must pass through different vertices at level j1,
and hence they pass through different j0-equivalent vertices for all j ≥ j1.

If they pass through j1-equivalent vertices at infinitely many levels, they must
have the dot in the same place in their basic blocks at those levels, because when
the j1-basic blocks are expanded to j0-basic blocks, they are the same and have the
dot in the same place, so the dot had to be in the same place for the j1-basic blocks.
Then x(0) and y(0) would be j1-equivalent at these infinitely many levels, and so
by Proposition 3.9 would have the same j1-coding, but they do not. Thus for all
large enough n, x(0) and y(0) pass through vertices that are j0-equivalent and not
j1-equivalent.

Continuing, given K ≥ 1, for each k = 0, . . . ,K − 1 we can find N , integers
j0 < j1 < · · · < jK , and pairs x(k), y(k) that for each n ≥ N and k = 0, . . . ,K − 1
pass through vertices that are jk-equivalent and not jk+1-equivalent:

vn(x
(k)) ∼jk vn(y

(k)) while vn(x
(k)) ≁jk+1

vn(y
(k)). (3)

But these pairs of vertices at any level n ≥ N are all different, because not jk-
equivalent implies not jk+1-equivalent. If there are at most R vertices at every level
and K > R2, this is a contradiction.

4. Modifying the GJ example to ruin the property SNE. We will show that
the example of Gjerde and Johansen [11, Figure 4], which has unbounded width and
is not conjugate to any odometer, is SNE (even SSNE) by specifying for any k
exactly which pairs of paths are k-equivalent. We will also determine for any k
which pairs are depth k.



A CLASSIFICATION OF NONEXPANSIVE BRATTELI-VERSHIK SYSTEMS 11

Denote the system in the GJ example by X. Given j > 0 there are 2j vertices
in the diagram at level j. For any i ≤ 2j, let v(j, i) denote the i’th vertex from
the left (beginning with i = 1) in level j. To specify the edge ordering, begin with
edges into each vertex ordered left to right. Then for all j > 1 and all odd i > 2,
on the edges entering v(j, i) swap the labels i and i− 1. For i = 1, 2, . . . and j > i,
paths that at level j pass only through vertices v(j, 2i) or v(j, 2i+1) will be said to
constitute the i’th Morse component MC(i) of the diagram. In particular, MC(i)
begins at level i+ 1.

Observation 4.1. (1) For any i ≥ 1, at any level of MC(i) the i-basic blocks are
the same (at both vertices), as can be verified by writing them out. It can also be
verified that the (i+ 1)-basic blocks at the vertices of MC(i) differ after level i+ 1.

(2) In the diagram for X, each vertex is connected to every vertex at the previous
level by exactly one edge, so all vertices at any level have the same dimension. From
this it can be argued inductively that for every j ≥ 1 two paths have the same ordinal
path label from the root into level j precisely when they have the same sequence of
edge labels into level j.

Proposition 4.2. The following statements hold for the GJ example, X.
(1) If two edges at level n ≥ 2 have the same label, then they have different targets.
If they also have different sources, then they are contained in MC(j) for some j < n.
(2) A pair of paths x, x′ with the same sequence of edge labels first differ at level
j ≥ 1 if and only if they enter a Morse component at level j and remain in that
Morse component at all levels j and higher, never again meeting the same vertex.
(3) If two paths have the same sequence of edge labels and first differ at level j, then
for some k < j they enter MC(k) at level j and are k-equivalent and not (k + 1)-
equivalent. Conversely, if two paths are k-equivalent and not (k + 1)-equivalent,
then they have the same sequence of edge labels and enter MC(k) at the level where
they first differ.
(4) For any k ≥ 2, a pair of paths is depth k if and only if those paths are k-
equivalent but not (k + 1)-equivalent. (Equivalently, in view of (3), two paths are
depth k if and only they have the same sequence of edge labels and enter MC(k) at
the level where they first differ.)

Proof. Proof of (1): Fix n ≥ 2. All edges with source v(n, 1) are labeled 1 and
all edges with source v(n, 2n) are labeled 2n. For all j = 1, ..., n − 1, all edges
with source v(n, 2j) are labeled 2j, with the exception of the single edge between
v(n, 2j) and v(n + 1, 2j + 1), which is labeled 2j + 1. Likewise, all edges with
source v(n, 2j+1) are labeled 2j+1, with the exception of the single edge between
v(n, 2j + 1) and v(n+ 1, 2j + 1), which is labeled 2j. If two edges between levels n
and n+1 have the same label 1 or 2n, they must have the same source (and different
targets). If two edges between levels n and n+ 1 have the same label and different
sources, then for some j = 1, ..., n − 1 one of these edges has source v(n, 2j), the
other has source v(n, 2j + 1), and the two edges have different targets and lie in
MC(j).

Proof of (2): Two paths with the same sequence of edge labels cannot first differ
into level 1, because the edges out of v(1, 1) all have label 1, while the edges out
of v(1, 2) all have label 2; so the paths first differ into level j ≥ 2, arriving at
different vertices at level j. Leaving level j, the two paths traverse edges with
the same label and different sources. By part (1), both of these edges are in the
same Morse component and have different targets. Hence, both paths also traverse
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different edges with the same label and different sources into level j+2. By repeated
applications of part (1) we get that the two paths enter a Morse component at level
j and remain in that Morse component at all levels j and higher.

Conversely, if a pair of paths x, x′ with the same sequence of edge labels enters
a Morse component at level j and remains in that Morse component at all levels j
and higher, then x and x′ first differ at level j. This is because, from above, the pair
cannot differ before entering a Morse component, so they meet different vertices at
a first level n > j. But since two edges in a Morse component with the same label
have different sources, n = j. In fact, x and x′ do not ever meet the same vertex in
that Morse component, since the edges entering any vertex have distinct labels.

Proof of (3): If paths x and x′ have the same sequence of edge labels, then by (2)
x and x′ enter a Morse component MC(k) at the first level j > k where they differ,
and they will meet distinct vertices in MC(k) at all levels j and higher. Hence, by
Observation 4.1 (1), they will have the same k-basic blocks at levels j and higher,
whereas their (k + 1)-basic blocks at level j + 1 will differ. By Observation 4.1 (2),
they will have the same ordinal path label from the root into all levels. Thus the
dot will be in the same place in their identical k-basic blocks at all levels k+1 and
higher: the pair will be k-equivalent but not (k + 1)-equivalent.

Conversely, we show that any pair of k-equivalent paths x, x′ that are not (k+1)-
equivalent enter MC(k) at the first level where they differ and have the same
sequence of edge labels. By the definition of k-equivalence, such paths agree to
level k and their k-basic blocks at levels k + 1 and higher are the same with the
dot in the same place. In particular, x and x′ have the same ordinal path label
from level k into any higher level and they agree to level k, so they have the same
ordinal path label from the root into any level. Hence, by Observation 4.1 (2), they
have the same sequence of edge labels. Denote by j the first level at which x and
x′ differ (so that j > k). Then, by (2), for some i < j both paths enter MC(i) at
level j and are contained in that component at all higher levels. By the preceding
paragraph, x and x′ are i-equivalent but not (i+ 1)-equivalent. Therefore, i = k.

Proof of (4): Suppose that k ≥ 2 and x, x′ is a depth k pair. Then x and
x′ have the same k-coding and therefore the same 2-coding. As shown later in
Example 4.6, this means that x, x′ are 2-equivalent, in other words, at all levels
after level 2, they have the same 2-basic block with the dot in the same place. At
any level n ≥ k, the k-basic block Bk(v) at any vertex v factors via the 1-block
code mentioned in Definition 2.1 onto B2(v), and the result has the same length
with the dot in the same position. It follows that the k-basic blocks at vn(x) and
vn(x

′) have equal length and the dot in the same position. Since x and x′ have the
same k-coding, then their k-basic blocks at all levels must be the same. Therefore,
x and x′ are k-equivalent. Furthermore, x and x′ are not (k+1)-equivalent, since at
some time in their orbits they follow different paths into level (k+1) (by definition
of depth k), whereas by Proposition 3.9 (k + 1)-equivalent paths must have the
same (k + 1)-coding. Hence, for all k ≥ 2, any depth k pair is k-equivalent but not
(k + 1)-equivalent.

Conversely, for all k ≥ 2, any pair of paths that is k-equivalent has the same
k-coding by Proposition 3.9. If that pair is not (k + 1)-equivalent, then, it is not
i-equivalent for any i > k. As just shown, this means it cannot be depth i for any
i > k. Therefore that pair is depth k.
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Corollary 4.3. The GJ example is standard nonexpansive

Proof. By Part (4) of Proposition 4.2, given k ≥ 2 two paths with the same sequence
of edge labels that enter MC(k) at the level where they first differ are depth k. For
example, the path x that passes through the vertices v(1, j) for all j, 1 ≤ j ≤ k,
then v(j, 2k) for all j > k and the path y that passes through the vertices v(1, j)
for 1 ≤ j ≤ k, then v(j, 2k + 1) for all j > k, are depth k.

The following observations are related to Example 4.6.

Observation 4.4. In the GJ example, the 2-coding of every path is aperiodic (also
sometimes called “nonperiodic”).

Proof. We will show that the forward coding of the minimal path xmin by vertices
at level 2, (v2(T

jx), j ≥ 0), is aperiodic. This implies that the 2-coding of xmin is
aperiodic, and hence, since the orbit of xmin is dense, the 2-coding of every path in
X is aperiodic. Fix a large n ≥ 3. The idea is to reduce C2(v(n, 1)) to a long initial
block of the famous Prouhet-Thue-Morse sequence, which is known to be aperiodic.

For n ≥ 2 we have

Cn−1(v(n, 1)) = v(n− 1, 1)v(n− 1, 2)v(n− 1, 3) . . . v(n− 1, 2n− 2), (4)

but note that for n ≥ 4

Cn−2(v(n−1, 3)) = v(n−2, 1)v(n−2, 3)v(n−2, 2)v(n−2, ) . . . v(n−2, 2n−4). (5)

This switch in order of adjacent symbols occurs at every level n−1 ≥ 3. Working
towards the expansion of C2(v(n, 1)) as a string on symbols v(2,m),m = 1, 2, 3, 4, in
Equation 4 replace each v(n−1, i) by Cn−2(v(n−1, i)), then in the result (which is
Cn−2(v(n, 1))) replace each v(n−2, i) by Cn−3(v(n−2, i)), etc., until we finally arrive
at C2(v(n, 1)). Note that, reading from left to right in any Cj(v(n, i)), 2 ≤ j < n,
from time to time the symbols v(j, 2) and v(j, 3) switch order.

We will now repeat this process of repeatedly expanding Cn−1(v(n, 1)), deliber-
ately losing some information at each step, to produce for each j = n − 1, . . . , 2 a
string C̃j on the alphabet {v(j, 2), v(j, 3), 0j}. In Equation 4, replace each v(n−1, i)

for i not equal to 2 or 3 by 0n−1, arriving at a block C̃n−1 on the alphabet
{v(n− 1, 2), v(n− 1, 3), 0n−1}.

Then in C̃n−1 replace each v(n − 1, 2) by Cn−2(v(n − 1, 2), each v(n − 1, 3) by
Cn−2(v(n − 1, 3)), each 0n−1 by (0n−2)

2n−4, and finally each v(n − 2, i) for i not

equal to 2 or 3 by 0n−2, arriving at a block C̃n−2 on the alphabet {v(n−2, 2), v(n−
2, 3), 0n−2}. Noting that |Cn−2(v(n − 1, i))| = 2n − 4 for all i, we have formed a

1-block factor C̃n−2 of Cn−2(v(n, 1)) on the alphabet {v(n−2, 2), v(n−2, 3), 0n−2}.
Continue analogously until in the end we have a block C̃2 on the alphabet

{v(2, 2), v(2, 3), 02} which is a symbol-by-symbol (1-block) factor of C2(v(n, 1)).
If the forward coding of xmin by vertices at level 2 were periodic, then there

would be a nonempty block P on the symbols v(2,m) (m = 1, 2, 3, 4), and a (possibly
empty) prefixQ of P , such that for large enough n we would have C2(v(n, 1)) = P kQ

for some k ≥ 2. Then C̃2 would have the form P̃ kQ̃ with P̃ , Q̃ 1-block images of
P,Q.

But note that for each j = n− 1, . . . , 3 a symbol v(j, 2) in C̃j expands to a block

0j−1v(j − 1, 2)v(j − 1, 3)02j−5
j−1 in C̃j−1, while a symbol v(j, 3) in C̃j expands to a

block 0j−1v(j − 1, 3)v(j − 1, 2)02j−5
j−1 in C̃j−1. Thus if we ignore the symbol 0j−1 in

each C̃j we see substrings on {a = v(·, 2), b = v(·, 3)} that expand according to the
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Prouhet-Thue-Morse (PTM) substitution a → ab, b → ba.

If C̃2 were of the form P̃ kQ̃ as above, with n large enough that k ≥ 2, then
deleting the symbol 02 from P̃ and Q̃ would present a long initial block of the PTM
sequence in the form P k

0 Q0 with P0, Q0 blocks on {a, b}, and |P0| ≥ 1 (because C̃2

contains symbols other than 02). But the PTM sequence abba baab . . . is aperiodic,
in fact it cannot begin with BB for any block B. Therefore the forward coding of
xmin by vertices at level 2 is not periodic, and hence the 2-coding of xmin is not
periodic.

Observation 4.5. In the GJ example, identifying at every level j > 2 the vertices
other than v(j, 3) produces a sequence of morphisms that forms a recognizable family.

Proof. Denote by Vj the set of vertices in our diagram at level j. For each j ≥
2 define an alphabet Aj = {Dj , Ej} and a (many-to-one) map ϕj : Vj → Aj

as follows. Assign to v(j, 3) the symbol Dj = ϕj(v(j, 3)), and to each v(j, i) for
i ̸= 3 assign the symbol Ej = ϕj(v(j, i)). When we expand each symbol (vertex)
v(j, i) to Cj−1(v(j, i)) the effect on the ϕj-images (Dj , Ej , Dj−1, Ej−1) at both levels
produces the morphism

Ej → E2
j−1Dj−1E

2j−5
j−1 , Dj → Ej−1Dj−1E

2j−4
j−1 (6)

for all j ≥ 3, in the sense of concatenation of blocks.
Denoting as usual by A+

j the set of nonempty words on the alphabet Aj , Equation

(6) defines a sequence of morphisms τj : Aj → A+
j−1, as (for example) in [2]. By

keeping track of the position of Dj in codings of paths by images of vertices at level
j under ϕj one can prove directly that the sequence is recognizable, in the sense that
every sequence on the alphabet Aj has at most one desubstitution, or factorization,
on the alphabet Aj+1. To see this, suppose that we are given a bisequence on the
alphabet Aj . When we see a block F (j, q) = DjE

q
jDj , since the block Dj+1Dj+1

does not appear in the coding of any path by the images of vertices at level j + 1,
it must be the case that F (j, q) is a subblock, in a uniquely determined position, of

Ej+1Ej+1 = EjEjDjE
2j−3
j EjEjDjE

2j−3
j if q = 2j − 1,

Ej+1Dj+1 = EjEjDjE
2j−3
j EjDjE

2j−2
j if q = 2j − 2, or

Dj+1Ej+1 = EjDjE
2j−2
j EjEjDjE

2j−3
j if q = 2j.

(7)

Thus the coding of an orbit by D2, E2 determines its coding by Dj , Ej for all
j > 2. This also follows from [2, Theorem 5.1], since each of these alphabets has only
two elements and each infinite bisequence generated by the sequence of morphisms
is aperiodic, by the arguments in the proof of Observation 4.4.

Note that the natural sequence of morphisms for the diagram defined by the
coding of vertices at each level j beyond some level j0 by the vertices at level j − 1
cannot be recognizable, because the GJ system is nonexpansive. (The coding of any
path by vertices at some level would then determine the codings at all subsequent
levels and hence the entire path.) Moreover, the BV system corresponding to the
sequence of morphisms τj is of finite topological rank (as well as expansive). In fact
it has topological rank 2: it cannot be 1 (conjugate to an odometer) by [8, Theorem
5.3] and Observation 4.4, since for every n > 1 the n-coding of the orbit of any path
is not periodic.
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We show now how the GJ example can be modified to spoil the strict requirements
of the definition of SSNE to produce an example of a nonexpansive system that
is not even SNE and is not conjugate to any odometer. (By [6] any such example
necessarily has unbounded width.) Further, this example is very well timed (see
Definition 5.2).

In [6], Downarowicz and Maass introduced a handy way to visualize paths and
their orbits in a BV system by means of 3-sidedly infinite arrays of j-symbols. Every
vertex v at level j ≥ 0 has an associated j-symbol which is also labeled v. The j-
symbol is a finite rectangular matrix with j + 1 rows consisting of subrectangles
(i-symbols for 0 ≤ i ≤ j), as described in [6, p. 741]. An array represents the entire
orbit of a path and its k-codings for all k ≥ 0. The path itself is indicated by an
arrow pointing to the left edge of its time 0 rectangle at level 0, and this arrow
indicates, by extending it vertically downward, all the other rectangles (vertices)
through which the path passes at levels n > 0. We call this extension the vertical
that corresponds to the path. Further development and use of these arrays can be
seen in [3] and [13].

The family of arrays determined by a diagram has a type of consistency called
“agreeable” in [3, Def. 3.2]: each j-symbol with a fixed name v has for its first
j rows the same concatenation of (j − 1)-symbols. Conversely, given an agreeable
family of arrays, we can construct its unique associated BV diagram (which may or
may not be properly ordered). For each vertex v at level j, the names, in order, of
the (j−1)-symbols comprising the first j rows of its associated j-symbol specify the
edges connecting certain vertices at level j−1 to it in a certain order, possibly with
repeats. This concatenation of (j − 1)-symbols determines the (j − 1)-basic block
Bj−1(v) at the vertex v, since it lists in order the paths from the root to v. The
Vershik map T on the diagram corresponds to sliding each array one “notch”, i.e.
level-0 rectangle width, to the right. Thus there is a natural correspondence between
BV systems, their diagrams, and agreeable families of arrays; in the following we
deal with them interchangeably.

Example 4.6. Denote the system in the GJ example [11, Figure 4, p. 1699] by X.
In their proof in [6], Downarowicz and Maass make use of a modification of the

Bratteli diagram and hence of all arrays representing orbits of the system. See [6, pp.
743–744, Figure 4] and [13, p. 204]). We will use a version of their splitting technique
to ensure that for every i ≥ 1 and every j ≥ i+ 1 the two vertices at level j in the
i’th Morse component have different 1-basic blocks.

For every j ≥ 2 and every i < j, we replace the j-symbol vi = v(j, 2i) with
two symbols v′i and v′′i so that |B1(v

′
i)| = |B1(v(j − 1, 1))| and the concatenation

of B1(v
′
i) and B1(v

′′
i ) is B1(vi). In particular, B1(v

′
i) is a proper prefix of B1(vi).

In the DM arrays, every occurrence of the j-symbol with label vi is then replaced
by two j-symbols labeled v′i and v′′i respectively. We leave the j-symbols for all
other vertices at level j unchanged, so their 1-basic blocks are the same in the
new diagram as they are in X. The result is that the left vertices in every Morse
component of X have been split into two vertices, whereas the right vertices remain
intact.

Note that for every j ≥ 2, the modifications at level j extend vertical bars (i.e
rectangle boundaries) at level j− 1 in the original diagram for X by only one level.
None of these bars is extended further by a modification at level j + 1. Hence,
no new infinitely long vertical lines consisting entirely of rectangle boundaries are
created. This means that after all modifications, the system represented by the
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diagram remains in the class of properly ordered systems. Moreover, every orbit
still meets every vertex, so the system is simple. Also note that since this new
system is conjugate to X, it is not conjugate to any odometer.

The new system has the property that at any level j ≥ 2 and i = 1, ..., j − 1, the
1-basic block at the right vertex v(j, 2i + 1) of the i’th Morse component through
level j is longer than the 1-basic blocks at the two new vertices. Hence, the right
vertex cannot be 1-equivalent to either of these new vertices. We claim that for every
k ≥ 1 paths that were k-equivalent in the old diagram are no longer k-equivalent
in the new diagram. This is because k-equivalent paths in the old diagram are
also 1-equivalent in that diagram. By Proposition 4.2, any pair of paths that are
1-equivalent in the original diagram are contained in a Morse component at all
levels after which they first differ, so they can no longer be 1-equivalent in the new
diagram. Then since k-equivalence implies 1-equivalence, the paths are no longer
k-equivalent in the new diagram.

The 1-coding of every path in X is periodic with period length 2. However, at
every level j > 2 the 2-basic block at v(j, 3) differs from the 2-basic blocks at at all
other vertices, and as a result the 2-coding is not periodic (see Observation 4.4).
We will exploit this property of 2-basic blocks to show that no new 2-equivalent
paths are created by our modifications. It then follows that the new system has no
2-equivalent paths, hence is not SNE.

By Prop 3.9, any 2-equivalent pair in the new system has the same new 2-coding.
In fact, it is the image of a pair in X that has the same old 2-coding. This is because
there is an invertible mapping between the old and the new codings. Specifically,
in both the old and the new system each path in X is represented by a vertical in
its array. Row 2 of the array displays the 2-coding of the path and the placement
of the dot is specified by the vertical. The splitting of rectangles and relabeling at
level 2 is reversible and does not change the position of the vertical. So a pair of
2-equivalent paths in the new diagram is the image of a pair in the diagram for X
with the same 2-coding. We now show that any such pair in X is 2-equivalent.

Let x, x′ be paths in the diagram for X with the same 2-coding. Using the
preceding observations about Dj and Ej (see Observation 4.5), we argue inductively
that for every j ≥ 3, any time the orbit of x is minimal from the root to v(j, 3),
the orbit of x′ is as well (and vice versa). Then because all j-basic blocks at level j
have the same length (dim v(j, 1)), any time the orbit of one of these paths changes
vertices at level j, the other one does as well. Since x and x′ have the same 2-coding,
it follows that they must be 2-equivalent at level j (i.e not only do they have the
same 2-basic block at level j but their dot is in the same place).

First note that, since x and x′ have the same 2-coding, their orbits must meet
v(2, 3) always at the same time; in particular, any time the orbit of one of these
paths is minimal from the root into v(2, 3) the orbit of the other is as well.

Next fix j ≥ 2 and assume that the orbits of x and x′ are minimal into v(j, 3)
always at the same time. Since the number of paths is the same from the root into
any vertex at level j, these orbits must be minimal into each vertex at level j always
at the same time.

Now suppose that for some m, Tmx is minimal from the root into v(j + 1, 3),
so that ϕj+1(vj+1(T

mx)) = Dj+1 and Tm+dim(v(j,1))x is minimal to v(j, 3), which
maps under ϕj to Dj . We claim that since the orbits of x and x′ always hit v(j, 3)
at the same time, we cannot have vj+1(T

mx′) = v(j + 1, i) for some i ̸= 3, i.e. we
cannot have ϕj+1(vj+1(T

mx′)) = Ej+1 rather than Dj+1. This follows from looking
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at the next vertices at level j + 1 hit by the orbits of x and x′. Since the block
v(j + 1, 3)v(j + 1, 3) cannot appear in the coding of any path by vertices at level
j + 1, the orbit of x next hits v(j + 1, i) for some i ̸= 3, which has image Ej+1,
while the orbit of x′ next hits a vertex with image either Ej+1 or Dj+1. As seen
in the proof of Observation 4.5, in the block Dj+1Ej+1 (on symbols Dj , Ej) in the
coding of the orbit of x (by images of vertices under ϕj), consecutive appearances of
Dj are separated by a distance 2j, while in the two possible blocks Ej+1Ej+1 and
Ej+1Dj+1 in the coding of the orbit of x′ the consecutive appearances of Dj are
separated by distance either 2j − 1 or 2j − 2. Therefore vj+1(T

mx′) = v(j + 1, 3).

Since Tm+dim(v(j,1))x is minimal to v(j, 3) and the orbits of x and x′ always
hit v(j, 3) at the same time, we must have that Tm+dim(v(j,1))x′ is also minimal to
v(j, 3). Since the dot for both ϕj(T

m+dim(v(j,1))x) and ϕj(T
m+dim(v(j,1))x′) is at the

beginning of an appearance of Dj , and Dj appears only once in each ϕj(v(j+1, 3)),

applying T− dim((v(j,1)) shows that both Tmx and Tmx′ are minimal from the root
into v(j + 1, 3).

5. Nonexpansive systems are conjugate to either well timed or untimed
systems. In this section we define several classes of nonexpansive BV systems
(W,W0, DM2, H2, U, U0, U1, and U2) according to various possibilities for the ex-
istence of pairs of paths with cuts. Recall that all systems under consideration are
nonexpansive, properly ordered, and simple. This work is necessary in order to es-
tablish Theorem 5.15, which states that every such system is conjugate to a system
in exactly one of W (“well timed”) or U (“untimed”).

Definition 5.1. For any class S of systems, we will denote the class of systems
conjugate to some system in S by CS:

CS = {X : there is Y ∈ S such that X is conjugate to Y }. (8)

We denote the class of systems not conjugate to any system in S by NCS, and
the class of systems not in S by ¬S. Note that it is not true that if X,Y ∈ CS
then X must be conjugate to Y .

In their proof that every bounded width system is either expansive or conjugate
to an odometer, Downarowicz and Maass [6] considered a class of systems that
they called Case (2), which we denote here by DM2. In [13] Hoynes’ Case (2)
is a slightly weaker condition, which we call H2, apparently still sufficient for the
proof to succeed. Downarowicz and Maass as well as Hoynes actually used stronger
properties, opposite to well timed, which here we call very untimed (U0) and U2.
Here is a list of some relevant classes of systems, obtained by varying quantifiers.

Definition 5.2. We say that a depth k pair of paths has long cuts if for every
n > k the pair has an n cut.

Definition 5.3. We define the following classes of systems:
(1) We say that a system is well timed if for every k ≥ 1 for every j > k there is a
depth k pair with a j cut. We denote the class of well timed systems by W .
(2) We say that a system is very well timed if for every k ≥ 1 there exists a depth
k pair with long cuts. We denote the class of very well timed systems by W0.
(3) DM2: For infinitely many k there is a j(k) > k such that no depth k pair has
a j(k) cut. The smallest such j(k) is called a k cutoff.
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(4) H2: For infinitely many k for every depth k pair x, x′ there is a j(k, x, x′) > k
such that x, x′ has no j(k, x, x′) cut. The smallest such j(k, x, x′) could be called a
k pair cutoff for the pair x, x′.
(5) U (untimed): For every k there is a k cutoff. (I.e., for every k ≥ 1 there is a
j(k) > k such that no depth k pair has a j(k) cut.)
(6) U0 (very untimed): For every k no depth k pair has a k+ 1 cut. (I.e., for every
k, k + 1 is a k cutoff).
(7) U2: For every k there is a depth k pair with no k + 1 cut.
(8) U1: For infinitely many k there is a depth k pair x, x′ and there is a j(k, x, x′) > k
such that the pair x, x′ has no j(k, x, x′) cut. (I.e., for infinitely many k there is a
depth k pair with a pair cutoff.)

Recall that the GJ example is SNE and is very well timed. The modified GJ
example (Example 4.6) is not SNE but it is very well timed, because the only
changes we made to the DM arrays were to add additional vertical bars, which will
not destroy the existing cuts.

Remark 5.4. In [6] the proof of the main theorem in Case (2) begins by telescoping
any system in DM2 so that the result is in U0. Hoynes [13, Remark 4.4] does not
see why this should always be possible, but suggests that changing the universal
quantifier to existential, i.e. replacing DM2 with U1, does allow one to telescope
such a system to one in U2, and that should be enough to let the proof proceed.

The proof in [13] assumes H2, telescopes so that for every k ≥ 1 there is a depth
k pair, and then telescopes to obtain a system in U2. The proof of Sublemma 4.1,
though, applies H2 to possibly ineligible pairs yi, yi′ , because H2 is not closed under
telescoping. Because the telescoped system is in U2, for every i there is a pair xi, x

′
i

with no i + 1 cut. But the pair yi, yi′ of the proof could be depth i′ and without
a cutoff, if it were the image under the telescoping of a pair of a depth other than
one of the infinitely many “good” k in the definition of H2 (see Proposition 5.7).

Indeed, in Example 5.13 we present a system that is in both classes DM2 (vacu-
ously) and WW (see Definition 5.8, below) and for which telescoping to any strictly
increasing sequence of levels takes it out of the class H2 (and hence out of DM2).
Such a system cannot be telescoped into U0, because then it would be in both CU
and WW = CW (see Proposition 5.10), but by Theorem 5.14 these classes are
disjoint.

Sublemma 4.1 of [13] could be proved as follows. Assuming that H2 is satisfied
nonvacuously, let i0 and all the other i’s mentioned in the argument be good k’s
according to the definition of H2. They may not fill up an interval in the integers,
but given L one can pick a sequence of them of length L and proceed to write the
same argument, being careful to choose the pairs xi, x

′
i so that their cutoffs j(i, i′)

interleave the levels with good k’s.

Remark 5.5. (1) U0 ⊂ U ⊂ DM2 ⊂ H2, and U2 ⊂ U1.
(2) Each of the classes W,W0, U, U0 is closed under telescoping. We will later (in

Remark 5.12) provide a proof of this for W and W0. To see that the very untimed
property persists under telescoping, note that if in a telescoping to levels {nl, l ≥ 0}
of a very untimed system we found a depth j pair with a j+1 cut, that pair would
correspond to a pair in the original system of some depth k ≥ nj with an nj+1 cut,
and hence with a k + 1 cut—cf. Proposition 5.7, (3) and (4).

Example 5.6. Every odometer presented with one vertex at every level is in U0

(very untimed). To see this, suppose that x, x′ are depth k ≥ 1, so that at some
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time m in their orbits they follow different edges from level k to level k + 1, i.e.
(Tmx)k ̸= (Tmx′)k.

Because (T jx)k and (T jx′)k, j ∈ Z, follow the same periodic sequence of edges
as j varies, we have that, for all j ∈ Z, (T jx)k ̸= (T jx′)k. In particular, x and x′

cannot have a k + 1 cut, since this would require that for some j they both follow
the unique minimal edge from level k to level k + 1.

Note that in this example for every k ≥ 1 there is a depth k pair, but that is not
a requirement in the definition of U0.

We used here a general principle that applies in any system: If level k + 1 is
strongly uniformly ordered with respect to level k (see Definition 3.1) and x, x′

follow edges with different ordinal labels from level k to level k + 1, so do T jx and
T jx′ for all j ∈ Z.

On the other hand, every odometer can be presented (up to conjugacy) with at
least two vertices per level after the root and all levels strongly uniformly ordered.
We claim that for such a system for every k ≥ 1 there is a depth k pair with a k+1
cut, but no depth k pair can have a k+2 cut. Thus every such system is in U \U0,
with a k cutoff of k + 2 for every k ≥ 1.

At each level n ≥ 1, the system has vertices v(n, 1), . . . , v(n, qn) for some qn ≥ 2.
Edges with source v(n, i) have ordinal label i.

Given k ≥ 1, let x be a path that is minimal from the root to v(k + 1, 1), and
let x′ be a path that is minimal from the root to v(k, 1) at level k and then follows
the edge (labeled 1) to v(k + 1, 2) at level k + 1. Because T jx, T jx′ are at strongly
uniformly ordered vertices at level k + 1 for all j ∈ Z, they follow edges with the
same ordinal label from level k to level k + 1. Thus x, x′ have the same k-coding
and hence the pair is depth k. The paths x, x′ also follow minimal edges to level
k + 1, so they have a k + 1 cut. Thus the system is not in U0.

We show now that if x, x′ is a depth k pair, then it cannot have a k + 2 cut, so
the system is in U , with k cutoff equal to k + 2. For suppose that x, x′ is a depth
k pair. Applying a power of T if necessary, we may assume that these paths follow
different edges from level k to level k+1. Because level k+1 is strongly uniformly
ordered with respect to level k, for all j ∈ Z the paths T jx and T jx′ follow different
edges from level k to level k + 1, and hence they are at different vertices at level
k + 1:

vk+1(T
jx) ̸= vk+1(T

jx′). (9)

Thus the edges downward from these vertices to level k+2 always have different
ordinal labels, precluding existence of a k + 2 cut.

We aim to show that CW ⊂ NCU and NCW ⊂ CU , so that the family of
simple, perfectly ordered nonexpansive BV systems is the disjoint union of CW
and CU ;

W0 ⊂ W ⊂ CW = NCU ⊂ NCU0. (10)

For this purpose we need to know how pairs of some depth and cuts in a system
relate to those in a telescoping of that system. If X̃ is a telescoping of X, we will
call X a lift of X̃. The following Proposition says, informally, that pairs of some
depth in one of X, X̃ telescope (lift) to pairs of a related depth in the other, as do
cuts for those pairs. One consequence is that nonexistence of cutoffs is preserved
under telescoping and lifts.

Proposition 5.7. Let (X,T ) be a system and (X̃, T̃ ) be another system obtained
by telescoping X. The following statements hold for every k ≥ 1 :
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(1) There exists an ĩ(k) ≤ k such that the image of any depth k pair in X under

the telescoping is depth ĩ(k) in X̃. Furthermore, ĩ(k) → ∞ as k → ∞.

(2) For all sufficiently large j there exists J̃(j) ≤ j such that if a depth k pair in X

has a j cut then the depth ĩ(k) image of that pair in X̃ has a J̃(j) cut. Furthermore,

J̃(j) → ∞ as j → ∞.

(3) For every depth k pair x̃(k), ỹ(k) in X̃ there exists an i(x̃(k), ỹ(k)) ≥ k such that
x̃(k), ỹ(k) is the image under the telescoping of a depth i(x̃(k), ỹ(k)) pair in X.
(4) For any j > k there exists a J(j) ≥ j such that if x̃(k), ỹ(k) is a depth k pair

in X̃ with a j cut, then that pair is the image under the telescoping of a depth
i(x̃(k), ỹ(k)) pair in X with a J(j) cut.

Proof. Suppose that X̃ is a telescoping of X to levels (nl, l ≥ 0) (with the root
being at level n0 = 0).

Proof of (1) and (2):
If k < n1, then after telescoping from the root to level n1, the image of any

pair of paths that is depth k in (X,T ) is a pair of paths with different 1-codings in

(X̃, T̃ ), i.e., ĩ(k) = 0. So assume k ≥ n1. In other words, there exists lk ≥ 1 such
that nlk ≤ k < k + 1 ≤ nlk+1. In particular, lk → ∞ as k → ∞.

Let x(k), y(k) be a depth k pair of paths in X. Since these paths agree to level
k and differ at level k + 1, they have the same nlk coding, but not the same nlk+1

coding. This means row nlk in the array of j-symbols for x(k) is identical to row
nlk in the array for y(k) and is met in the same position by the verticals (see the
discussion preceding Example 4.6) for both paths, whereas the same is not true for
row nlk+1. For every l ≥ 1, the telescoping removes all rows of the arrays between
rows nl and nl+1, so that what used to be row nl becomes row l. Afterwards, row
lk in the array for the image of x(k) is identical to row lk in the array for the image
of y(k) and is met in the same position by the verticals for both paths, whereas
the same is not true for row lk+1. Hence, the image of the pair x(k), y(k) under the
telescoping is depth lk. Letting ĩ(k) = lk, (1) is proved.

Suppose that j > k and the paths x(k) and y(k) have a j cut. This cut appears
as a pair of vertical segments in the arrays for the two paths that begin in the same
position in row 0, end in row j, and consist entirely of rectangle boundaries. Find
lj such that nlj ≤ j < nlj+1. After removing the rows for the telescoping, these

vertical segments in the arrays for x(k) and y(k) extend from level 0 to level lj and
still consist entirely of rectangle boundaries. Hence both represent minimal paths
in X̃ from the root to level lj . It follows that the image of x(k), y(k) has an lj cut.

Letting J̃(j) = lj , (2) is proved.
Proof of (3) and (4):

Now let x̃(k), ỹ(k) be a depth k pair of paths in X̃. This means row k in the array
for x̃(k) is identical to row k in the array for ỹ(k) and is met in the same position
by the verticals for both paths, whereas the same is not true for row k + 1. In
the original diagram, there is a pair of paths whose image under the telescoping
is x̃(k), ỹ(k). If we restore the rows in their respective arrays that were removed
by the telescoping, rows k and k + 1 in the arrays for x̃(k) and ỹ(k) become rows
nk and nk+1. Hence, for some i(x̃(k), ỹ(k)) ∈ [nk, nk+1), it must be the case that
these arrays are now the same from row 0 to row i(x̃(k), ỹ(k)) with the vertical in
the same position, and that the same is not true for row i(x̃(k), ỹ(k)) + 1. It follows
that x̃(k), ỹ(k) is the image of a depth i(x̃(k), ỹ(k)) pair of paths in X under the
telescoping. This proves (3).
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For (4), it is important to note that when we reinsert rows into an array for X̃
that were removed during the telescoping to get an array for some path in X, any
vertical segment bounding a rectangle in row l ≥ 1 of the former becomes a rectangle
boundary in row nl of the new array. Moreover, the vertical line containing this
rectangle boundary at level nl must include rectangle boundaries from row nl all
the way up to row 0. So any j cut for a depth k pair in X̃ just becomes longer when
we reinsert into their respective arrays rows that were removed by the telescoping.
Specifically, any j cut for a depth k pair of paths x̃(k), ỹ(k) in X̃ corresponds to an
nj cut for the preimage of x̃(k), ỹ(k) before the telescoping. Letting J(j) = nj , (4)
is proved.

Some of the systems that we shall encounter while proving our main results will
have the property encapsulated in the following definition.

Definition 5.8. We say that a system is weakly well timed if for infinitely many
k for every j > k there is a depth k pair with a j cut. WW denotes the class of
systems with this property.

By definition, W ⊂ ¬DM2 ⊂ WW . We will want to know what happens to the
well timed and WW properties under microscoping and telescoping.

It is not necessarily the case that if (X̃, T̃ ) is a telescoping of (X,T ) and is well
timed, then (X,T ) is well timed. For example, suppose we telescope X to even
levels. It could happen that (X,T ) has no pairs with odd depth, and yet for every

k ≥ 1 and every j > k there exists a depth k pair in (X̃, T̃ ) with a j cut whose lift

to (X,T ) is depth 2k. In this case, (X̃, T̃ ) is well timed while (X,T ) is not.

Lemma 5.9. Let (X,T ) be a system and (X̃, T̃ ) be another system obtained by
telescoping X to levels (nl, l ≥ 0).

(1) If (X,T ) ∈ W , then (X̃, T̃ ) ∈ W . Likewise, if (X,T ) ∈ W0, then (X̃, T̃ ) ∈ W0.

(2) If (X,T ) ∈ WW , then (X̃, T̃ ) ∈ WW .

(3) If (X̃, T̃ ) ∈ WW , then (X,T ) ∈ WW .

Proof. Proof of (1):
Suppose (X,T ) is well timed. Fix k ≥ 1 and let j > k. There exists in X a

depth nk pair with an nj cut. As shown in the proof of Proposition 5.7, parts (1)

and (2), after the telescoping this yields a depth k pair in X̃ with a j cut.
If (X,T ) is very well timed, then for every k ≥ 1 there exists a depth nk pair

with an nj cut for all j > k. The above argument shows that this yields a depth k
pair with long cuts after the telescoping.

Proof of (2):
Suppose (X,T ) ∈ WW . In other words, there exists an increasing sequence (mk)

such that for every k and every j > mk there is a depth mk pair in (X,T ) with a j
cut.

By Proposition 5.7 (1), for every k ≥ 1 there exists ĩ(mk) ≤ mk such that the

image of any depth mk pair in X under the telescoping is depth ĩ(mk) in X̃. Let
m̃k = ĩ(mk). Since ĩ(k) → ∞ as j → ∞, the sequence (m̃k) is increasing.

Given k ≥ 1 and j > mk, find in (X,T ) a depth mk pair with a j cut. By

Proposition 5.7 (2), there exists a J̃(j) ≤ j such that the depth m̃k image of

this pair in (X̃, T̃ ) has a J̃(j) cut. Since J̃(j) → ∞ as j → ∞, it follows that

(X̃, T̃ ) ∈ WW .
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Proof of (3):

Suppose that (X̃, T̃ ) ∈ WW . There exists an increasing sequence (m̃k) such that

for every k and every j > m̃k there is a depth m̃k pair x̃(m̃k), ỹ(m̃k) in X̃ with a j
cut.

Fix k ≥ 1. As we vary j, the pair x̃(m̃k), ỹ(m̃k) may change, and hence
i(x̃(m̃k), ỹ(m̃k)) may vary. However, it was shown in the proof of Proposition 5.7 (3)
that for every depth m̃k pair x̃(m̃k), y(m̃k), we have nm̃k

≤ i(x̃(m̃k), ỹ(m̃k)) < nm̃k+1.
Hence, there exists mk ∈ [nm̃k

, nm̃k+1
) such that for infinitely many j > m̃k, the

corresponding pair x̃(m̃k), ỹ(m̃k) lifts to a depth mk pair, which by Proposition 5.7
(4) has a J(j) > j cut. Since J(j) → ∞ as j → ∞ (and the mk are all distinct), it
follows that (X,T ) ∈ WW .

Proposition 5.10. For a system (X,T ) the following statements are equivalent:
(1) (X,T ) is weakly well timed.
(2) (X,T ) has a telescoping that is well timed.
(3) (X,T ) is conjugate to a well timed system.
Thus WW = CW .

Proof. We show first that (1) implies (2). Suppose there are infinitely many k for
which for every j > k there exists a depth k pair in X with a j cut. In other words,
there exists an increasing sequence (mk) such that for all k and for every j > mk

there is a depth mk pair in X with a j cut. Let X̃ be the telescoping of X to levels
(mk).

Given k ≥ 1 and j > mk, find in (X,T ) a depth mk pair with a j cut. By

Proposition 5.7 (1) and (2), the image of this pair is depth k with a J̃(j) cut. Since

J̃(j) → ∞ as j → ∞, it follows that X̃ is well timed.
That (2) implies (3) is clear, since conjugacy of BV systems is the equivalence

relation that corresponds to the one for diagrams that is generated by telescoping
and isomorphism [12, Section 4]. So if (X,T ) has a telescoping that is well timed
then it is conjugate to that well timed system.

To prove that (3) implies (1), suppose that (X,T ) is conjugate to a well timed

system (Y, S). As remarked above, then there are a system Z and telescopings X̃

of X and Ỹ of Y such that Z telescopes on even levels 0, 2, 4, . . . to X̃ and on odd
levels 0, 1, 3, . . . to Ỹ . By Lemma 5.9 (1), any telescoping of a well timed system is

also well timed. So we may assume that Ỹ = Y .
Since W ⊂ WW , Y is also weakly well timed. Hence by Lemma 5.9 (3), Z ∈

WW . Next consider the telescoping of Z to X̃. By Lemma 5.9 (2), (X̃, T̃ ) ∈ WW .
Applying part (3) of the lemma again, we conclude that (X,T ) ∈ WW .

With appropriate adjustments the foregoing Proposition and its proof adapt to
very well timed systems.

Proposition 5.11. For a system (X,T ) the following statements are equivalent:
(1) There are infinitely many k for which there exists a depth k pair with long cuts.
(2) (X,T ) has a telescoping that is very well timed.
(3) (X,T ) is conjugate to a very well timed system.

Remark 5.12. Part (3) of Proposition 5.11 shows that parts (1) and (2) persist
under telescoping.

Example 5.13. As promised in Remark 5.4, we show that WW ∩DM2 ̸= ∅. We
modify the diagram for the GJ exampleX by changing every other (even-numbered)
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Morse component so that all its vertices are uniformly ordered: for all j ≥ 4 and
all even i such that 1 ≤ i < j − 1 we change the ordering at v(j, 2i + 1) so that it
is left to right. Let Y denote the new diagram and system, with the same vertices
v(j, i) and “Morse components” MC(k) as in X. Then for every odd k, there is
still a depth k pair with long cuts (these are just the same as they were in the GJ
example, see Proposition 4.2 and Corollary 4.3), so the new system is in WW .

(In more detail, as in Corollary 4.3, let x and x′ be paths that agree to level
k+1 and pass through v(k+1, 2k) and v(k+1, 2k+1), respectively, and such that
the ordinal edge label for every edge in x and in x′ after level k + 1 is 2k. In other
words, x and x′ enter the Morse component MC(k) at its top and then follow its
two sides all the way down. By Proposition 4.2, x and x′ are depth k. It is easily
verified that for every j > k, there exists a time m < 0 such that Tmx and Tmx′

agree to level j − 1 and are minimal from the root into v(j, 2k) and v(j, 2k + 1),
respectively. Therefore x and x′ are depth k and have long cuts.)

We show now that for all even k there are no longer any depth k pairs, so the
new system is (vacuously) in DM2 (and hence in H2). The idea is that, as in X,
the only candidates for depth k pairs are paths down MC(k), but the changed edge
orders cause these pairs to have different 2-codings, so they have become depth 1.

All changes to X were at levels 4 and higher. Moreover, for every j ≥ 2, the
coding of v(j, 3) by vertices at level j−1 remains the same in Y as it was in X; and
at vertices in Y where this coding is different than it was in X, it is now the same as
the coding at v(j, 1). Hence, if as in Observation 4.5 we expand each symbol (vertex)
v(j, i) to Cj−1(v(j, i)), the effect on the ϕj-images (strings on Dj , Ej , Dj−1, Ej−1)
produces the same morphisms as before. The argument made in Example 4.6 that
paths in X with the same 2-coding are 2-equivalent can then be applied to show
the same holds true in Y . Hence, the proof of Proposition 4.2 (4) still works to
show that for any k ≥ 2 any depth k pair in the new system represented by Y is
k-equivalent but not (k + 1)-equivalent.

Now let x, x′ be a pair of paths in Y that for some k ≥ 2 is depth k in the
corresponding system. Since Observation 4.1 (2) still holds for Y , we can argue as
in the proof of Proposition 4.2 (3) that x and x′ in Y have the same sequence of
edge labels, enter MC(k) at the level at which they first differ and are contained
in MC(k) at all subsequent levels. At any level of Y only pairs of edges inside one
of the odd Morse components in Y can have the same label and distinct sources.
Hence, k must be odd, and so there are no pairs of paths with even depth in the
new system.

Telescoping the new diagram to a strictly increasing sequence of levels jn will
produce a system that is not in H2 (or DM2). This is because given any n there
are an odd integer k ∈ [jn, jn+1) and a depth k pair with long cuts. After the
telescoping this pair will be depth n (by the proof of Proposition 5.7 (1)) and will
still have long cuts (by Proposition 5.7 (2)), so the telescoped system is in W0. By
definition, W0 ∩H2 = ∅, so the class H2 is not closed under telescoping.

Remark 5.4 mentioned that H2 not being closed under telescoping impacts the
proofs in [6, 13]. If in some system for every odd k there were a depth k pair with
a cutoff (so the system is nonvacuously in H2, unlike our example), and for every
even k there were a depth k pair with long cuts (so the system is also in WW ),
the same argument as above would show that telescoping to any strictly increasing
sequence of levels produces a system that is not in H2. If the levels were chosen
to produce a system in U2, the result would be in U2 \ H2. The proofs in [6, 13]
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could be clarified by ruling out this case or dealing with it, maybe along the lines
we suggest in Remark 5.4.

The following Theorem subsumes Proposition 3.12.

Theorem 5.14. No system that is conjugate to a well timed system can also be
conjugate to an untimed system: CW ⊂ NCU .

Proof. Suppose that X is a system that is conjugate to a well timed system and
is also conjugate to an untimed system Y . As mentioned above, by [12, Theorem

4.7], then there are a system Z and telescopings X̃ of X and Ỹ of Y such that Z

telescopes on even levels 0, 2, 4, . . . to X̃ and on odd levels 0, 1, 3, . . . to Ỹ .
By Proposition 5.10, X ∈ WW . Repeated application of Lemma 5.9 gives X̃ ∈

WW , then Z ∈ WW , then Ỹ ∈ WW , and finally Y ∈ WW . This is a contradiction,
since by definition no system can be both untimed and weakly well timed.

Theorem 5.15. The family of nonexpansive systems is the disjoint union of those
conjugate to well timed systems and those conjugate to untimed systems:

NE = CW ⊔ CU. (11)

Proof. By Theorem 5.14, CW ⊂ NCU , so it remains only to show that NCW ⊂
CU . By Proposition 5.10, if (X,T ) ∈ NCW , then there is a k0 such that for all
k ≥ k0 there is a k cutoff j(k) > k: no depth k pair has a j(k) cut. Let us telescope

to levels nl, l ≥ 0, with n1 > k0 to produce the system (X̃, T̃ ). Suppose that k̃ ≥ 1

and x̃, ỹ is a depth k̃ pair in X̃ with a j̃ cut. Proposition 5.7 (3) and (4) tell
us that then x̃, ỹ is the image under the telescoping of a pair x, y in X of depth
i(x̃, ỹ) ∈ [nk̃, nk̃+1) with a J(j̃) = nj̃ cut. Every i ∈ [nk̃, nk̃+1) has a cutoff j(i) in

X, in particular J(j̃) < j(i(x̃, ỹ)). Since

j̃ ≤ J(j̃) < j(i(x̃, ỹ)) ≤ max{j(i) : i ∈ [nk̃, nk̃+1)}, (12)

j̃ is bounded, over all pairs in X̃ of depth k̃. Thus in X̃ for every k̃ there is a
k̃ cutoff. This shows that telescoping past k0 produces a system in U , and hence
(X,T ) ∈ CU .

6. Describing untimed systems. Now we take a few steps towards determining
exactly which BV systems are very untimed. If a system (X,T ) is very untimed
and not conjugate to an odometer, then, by [6], it must have infinite “topological
rank”. At the moment we do not have an example of a very untimed system that
has unbounded width.

Lemma 6.1. If in a BV diagram level n + 1 is uniformly ordered and has more
than one vertex, then in the BV system there is a depth n pair of paths with an
n+ 1 cut.

Proof. Choose two paths x, x′ that are minimal into distinct vertices at level n+1.
Since level n+1 is uniformly ordered, the n-basic block at each vertex at level n+1
is periodic with shortest repeating block P . (By this we mean that for each vertex
v at level n + 1, there is an integer nv such that the n-basic block at v is Pnv ).
Thus the n-factor is a rotation on |P | points, and the n-coding of every path is the
two-sided sequence P∞, with a choice of the center position. Since x and x′ are
minimal into level n + 1, their “dot” is at the beginning of an explicit appearance
of P in the n-basic blocks at vn+1(x) and vn+1(x

′) respectively, so x, x′ have the
same n-coding. Hence x and x′ are depth n with an n+ 1 cut.



A CLASSIFICATION OF NONEXPANSIVE BRATTELI-VERSHIK SYSTEMS 25

Proposition 6.2. Every bounded width very untimed system has only finitely many
levels with more than one vertex.

Proof. By [6], bounded width and nonexpansive implies conjugate to an odometer.
By [8] (and also mentioned in [11]) there is a telescoping that has infinitely many
uniformly ordered levels. Let n + 1 (n > 0 ) be a uniformly ordered level in the
telescoped system, which is still very untimed (see Remark 5.5, (2)). Because of the
Lemma and because no depth n pair can have an n + 1 cut, this level n + 1 must
have just one vertex. Returning to the original (not telescoped) system, the level
m corresponding to level n + 1 in the telescoped system has just one vertex. Any
level that follows a level with just one vertex is uniformly ordered, and so, by the
Lemma, level m + 1 in the original system must also have just one vertex. Thus
every level in the original system from level m+ 1 on has just one vertex.

Example 6.3. So one way to produce very untimed systems is to begin with levels
with more than one vertex with edges ordered so that all the edges downward from
each vertex have different ordinal labels. Exiting these levels downward there can
be no cuts. Then continue forever with single-vertex levels connected by multiple
edges. Any such system is conjugate to an odometer, upon telescoping from the
root to the first single-vertex level.

Definition 6.4. A BV system is deterministic if for every n ≥ 1 the edges down-
ward from each vertex at level n have different ordinal labels.

The following Proposition provides more detail about the possible form of deter-
ministic diagrams such as the one in Example 6.3.

Proposition 6.5. Let (X,T ) be a deterministic system. For each n ≥ 1 let kn
denote the number of vertices at level n. Then k1 ≥ k2 ≥ . . . , and eventually all
kn = 1. (So the diagram has the form of the previous Example.)

Proof. If kn < kn+1 for some n ≥ 1, then the label 1 must be repeated on edges
between levels n and n+ 1, so kn ≥ kn+1 for all n.

If eventually all kn = k, we claim that there would be k minimal paths, and so
we must have k = 1. This is because from each low (late) enough level n+ 1 there
are k minimal edges (labeled 1) upward to k different vertices at level n (because
each vertex at level n has a single edge downward that is labeled 1), and hence k
minimal paths from level n+ 1 up to the root. Looking at larger and larger values
of n, we can see k distinct paths that follow only minimal edges.

Example 6.6. Not every bounded width very untimed system must be determin-
istic, as Figure 3 shows. The small numbers are ordinal edge labels, and the strings
in parentheses are 1-basic blocks. In this example the only possible cuts are for
pairs of paths among x = 0auA... (thick edges), x′ = 0avB . . . (dashed edges) and
x′′ = 0bwB . . . (or pairs in the orbits of such pairs). While x and x′ have a 2 cut,
they are not depth 1; x and x′′ have 2 and 3 cuts, but they are not depth 1 or 2;
and x′,x′′ have a 2 cut, but they are not depth 1. In fact there are no depth 1 or
depth 2 pairs.
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Figure 3. A nondeterministic bounded width very untimed system

7. Conclusion and questions. The family of simple, properly ordered Bratteli-
Vershik systems is the disjoint union of the expansive systems, the systems conjugate
to well timed systems, and the systems conjugate to untimed systems:

BV = E ⊔ CW ⊔ CU. (13)

The foregoing suggests several questions:
1. Is there an example of an untimed (or even very untimed) system that has

unbounded width? Is there an untimed system that has infinite topological rank,
equivalently is not conjugate to any odometer? Is the class U closed under conju-
gacy?

2. Is every well timed system conjugate to an SSNE (or SNE) system? If so,
one could regularize nonexpansiveness by modifying any member of this class W of
well timed NE systems so that it becomes SSNE.

3. There are many questions about the relations among the classes of systems
that we have defined, and others that could be defined. Exactly which classes
can overlap, exactly what inclusions are there among them, exactly which of these
inclusions are strict, etc.? Is every odometer (by which we here mean all levels
strictly uniformly ordered, cf. Example 5.6) in U? Is every system conjugate to an
odometer in U? Is SNE contained in W? Can H2 and W intersect? (We know
DM2 ∩W = ∅.) Is U1 ∩W ̸= ∅? Is U2 ∩W ̸= ∅?

Acknowledgments. We thank Sarah Bailey Frick for valuable contributions dur-
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