Complexity, disorder, information, chance

Karl Petersen

Department of Mathematics
University of North Carolina at Chapel Hill, USA
https://petersen.web.unc.edu

University of Tartu

November 15, 2022

Outline

1. Plan
2. Talk

Plan

Complexity

0,1 sequences

The complexity function of a sequence, system, or set of configurations is

$$
N_{n}=\text { number of size-n "blocks". }
$$

1. Periodic
01010101...

$$
h=\lim _{n \rightarrow \infty} \frac{\log N_{n}}{n}=0
$$

2. Substitutions

$$
\begin{aligned}
& 0 \rightarrow 01,1 \rightarrow 0 \\
& 0 \\
& 0 \quad 1 \\
& 01 \quad 0 \\
& 01 \quad 0 \quad 01 \\
& h=0 \\
& N_{n}=n+1 \quad \text { for all } n \geq 1
\end{aligned}
$$

Not periodic, but long-range order, recurrence.
Exercise: If N_{n} is bounded for a sequence, then the sequence is eventually periodic: $x=A \quad B^{\infty}$.
3. Shifts of finite type (topological Markov chains)

No 11:

$\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
$0100010100100 \ldots$

$$
h=\log \lambda_{\max }>0
$$

Exponential growth rate of the number of paths in the graph.

$$
N_{n+1}=N_{n}+N_{n-1}
$$

Full shift, Σ_{2} :

0110001011101001111...
$h=\log 2$

Kolmogorov complexity

length of the shortest program (for a universal Turing machine) that produces the (finite) string
$(01)^{\infty}$ is an instruction that produces the infinite sequence 0101010101...

The program is like a theory of observed phenomenaa compression of data.

Disorder

Given enough time, many small Maxwell demons can appear by chance and, using ambient energy, divert parts of a system toward unlikely states.

A nebula can contract under gravity, but it is unlikely to have total angular momentum zero.

Rotation, gravity, and random particle collisions cause flattening to a disk with fairly uniform angular velocities.
Random irregularities sweep up particles by collisions and gravity, leading to stars and planets.
??

Babies
Decor
Decor

Checkered T-Shirts

Prismatic Penrose

米 Designed and sold by Gres ■ -

\$12.95 \$10.95

Color: Black

4ロ〉4岛 \downarrow 引三

Information

Claude Shannon, 1948:
When we are told that an event A that has probability $P(A)$ has occurred, the amount of information gained is

$$
-\log _{2} P(A) \quad \text { bits. }
$$

This equals the uncertainty removed.
Information is measured in the number of binary digits (answers to yes-no questions) needed to convey it.

Claude Shannon

Signals can be compressed, subject to how much average information per symbol they contain, which is called the entropy of the source:

$$
\begin{aligned}
h(\mathcal{X}) & =\lim _{n \rightarrow \infty}\left[-\frac{1}{n} \sum_{B \in D^{n}} P(B) \log _{2} P(B)\right] \\
& =\lim _{n \rightarrow \infty}\left[-\frac{1}{n} \log _{2} P\left(x_{0} x_{1} \ldots x_{n-1}\right)\right] .
\end{aligned}
$$

Why $I(A)=-\log _{2} P(A)$?
Additive for independent events.
Zero for certain events, large for improbable events.
Fechner's Law, 1860: The magnitude of the sensation produced by some stimulus is proportional to the logarithm of the intensity of the stimulus.
(In what units are sensation strength and stimulus intensity being measured?)

Gustav Theodor Fechner

Boltzmann, c. 1875:

$$
S=k \log W
$$

The entropy of a macrostate $X=(E, V, N)$ is proportional to the number W of compatible microstates.
W is a measure of our ignorance about the "inside" of the macrostate X, its complexity, its degree of disorder.
(When all microstates are assumed to be equally likely, each has probability $P(A)=1 / W$.)

Ludwig Boltzmann

Entropy (Macquom Rankine 1850, Rudolf Clausius 1865) can be defined to be a function of the values of the variables that specify a system that is additive with respect to subsystems:

$$
S\left(X_{1} \sqcup X_{2}\right)=S\left(X_{1}\right)+S\left(X_{2}\right)
$$

It is postulated that when two systems are put in contact, the values of the variables for each system adjust so that at equilibrium S is at a maximum.

It follows that if they have different inverse temperatures

$$
\beta=\left(\frac{\partial S}{\partial E}\right)_{N, V}
$$

and are allowed to exchange energy but not to exchange particles, to reach equilibrium they equalize their temperatures.

Boltzmann sought to reduce thermodynamics to statistical mechanics.

It from bit

John Archibald Wheeler, 1989: "It from bit."
Information encapsulates the program that generates stuff.
"We seek to understand all of physics in terms of information."
For example:
(01) ${ }^{\infty}$
the long-range order in a substitution sequence or Penrose tiling
the theory that explains a set of observations an impulse that generates the realities that it describes?

Logos? Demiurge?

Einstein, Yukawa, Wheeler

John Archibald Wheeler

In ancient Greek philosophy, logos was the principle of order and knowledge. (Heraclitus, Stoics)

John 1:1. En arche ēn ho Logos, In principio erat verbum. It is logos through which all things are made. Logos is an idea or plan in the mind of God.
Christ and Mohammed are seen as logos incarnate, intermediaries or messengers between humans and higher entities.

Faust: Geschrieben steht: "Im Anfang war das Wort". ... der Sinn ... die Kraft ... Mir hilft der Geist! Auf einmal seh' ich Rat und schreibe getrost: Im Anfang war die Tat!
Torsten Larbig: The verb is the door to the information that lets a sentence exist.

Heraclitus

Nürnberg Chronicle, 1493

Heraclitus

From the Villa of the Papyri, Herculaneum
National Archaeological Museum, Naples

$$
\text { idea } \xrightarrow{\text { word }} \text { action }
$$

$$
\begin{aligned}
\text { logos } & \longrightarrow \text { world } \\
\text { program } & \longrightarrow \text { data } \\
\text { theory } & \longrightarrow \text { experiment }
\end{aligned}
$$

Science seeks to reverse the process.
Science is knowledge, not just of a collection of facts, but of a design (theory) that "explains" the facts by giving them coherence.

Chance

Chance

A possible source of chance is coarse-graining.
Our imperfect perception and measuring capabilities necessarily leave us ignorant of the properties of an occurring microstate inside of our observed macrostate.

A photon encountering a beam splitter can either be reflected or not, and we don't know which happens until it hits a detector.
So we say that it is in a mixture of states, each with probability $1 / 2$. Ignorance also comes from quantum entanglement.

When we are about to roll a die and don't know what number might come up, we say that each has probability $1 / 6$.

Such statements are supported by the evidence of repeated trials. (Frequentism vs. subjectivism.)

Conclusion

Second Law of Thermodynamics: Entropy tends to increase. John von Neumann to Claude Shannon: "You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more importantly, no one really knows what entropy really is, so in a debate you will always have the advantage."

Complexity and disorder both promote (or arise from) ignorance (lack of information=entropy).

So does chance.

Complexity, disorder, information, chance are deep and slippery ideas.

But they are subject to study by mathematics.
Sometimes progress can be made by separating structure and randomness and analyzing the effects of each.
Examples: Furstenberg's proof of Szemerédi's Theorem (every positive density set of natural numbers contains arbitrarily long arithmetic progressions), ergodic theorems, Austin's recent proof of the Weak Pinsker Conjecture, etc.
Intricacy (Sporns, Tononi, Edeleman 1994): Maximum effectiveness is achieved by combining (balancing) freedom and order.
Brain, society, etc.

https://petersen.web.unc.edu

