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Overview

We consider some recent developments regarding

nonperiodic Sturmian 0,1 sequences

and also periodic “Sturmian" sequences, involving

lexicographic order

Farey diagrams

adic transformations

ideals in C∗ algebras.

Queen Mary, U. of London, June 22, 2009 – p.2/37



Characterizations of nonperiodic Sturmian sequences

Minimal complexity: # of n-blocks = P (n) = n + 1 for all n.
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Characterizations of nonperiodic Sturmian sequences

Minimal complexity: # of n-blocks = P (n) = n + 1 for all n.

Balanced: For any two blocks u, v of the same length, ||u|1 − |v|1| ≤ 1.

Codings of irrational rotations: There are x and irrational θ such that
for all n, ω(n) = 1[1−θ,1)(x + nθ) or for all n, ω(n) = 1(1−θ,1](x + nθ).
(A Sturmian system is then the closure of the orbit of ω under the
shift. It is minimal, uniquely ergodic, and isomorphic to the irrational
translation.)
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Characterizations of nonperiodic Sturmian sequences

Minimal complexity: # of n-blocks = P (n) = n + 1 for all n.

Balanced: For any two blocks u, v of the same length, ||u|1 − |v|1| ≤ 1.

Codings of irrational rotations: There are x and irrational θ such that
for all n, ω(n) = 1[1−θ,1)(x + nθ) or for all n, ω(n) = 1(1−θ,1](x + nθ).
(A Sturmian system is then the closure of the orbit of ω under the
shift. It is minimal, uniquely ergodic, and isomorphic to the irrational
translation.)

Staircase coding: There are x and irrational θ such that for all n,
ω(n) = ⌊x + (n + 1)θ⌋ − ⌊x + nθ⌋ or for all n,
ω(n) = ⌈x + (n + 1)θ⌉ − ⌈x + nθ⌉. (Look at jumps between lattice
points above or below line through origin of slope θ. Get jump (of
floor) when nθ is in [1 − θ, 1).)
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Upper and lower staircase codings, by jumps

1 0 1 0 1 0 0

0 0 1 0 1 0 1
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Farey, Stern-Brocot, or C. Haros Diagram
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Properties of Farey diagram

Generated by adding numerators and denominators.
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Every rational in [0, 1] appears, generated exactly once, automatically
in lowest terms.

Two Farey neighbors, p/q and p′/q′, satisfy p′q − q′p = ±1.

Infinite paths give best one-sided approximations to irrationals. When
switch sides, have best two-sided approximations, the ordinary
continued fractions.
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Properties of Farey diagram

Generated by adding numerators and denominators.

Every rational in [0, 1] appears, generated exactly once, automatically
in lowest terms.

Two Farey neighbors, p/q and p′/q′, satisfy p′q − q′p = ±1.

Infinite paths give best one-sided approximations to irrationals. When
switch sides, have best two-sided approximations, the ordinary
continued fractions.

I learned about the Farey shift from papers of Jeff Lagarias and about
this “Farey diagram with memory" from Oliver Jenkinson and Florin
Boca.
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Ordinary and intermediate continued fractions

Let B =

(

0 1

1 1

)

, A =

(

1 1

0 1

)

.
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Farey Diagram of Blocks

0 1

0 01 1

0 001 01 011 1

0 0001 001 00101 01 01011 011 0111 1

0 00001 0001 0001001 001 00100101 00101 0010101 01 0101011 01011 01011011 011 0110111 0111 01111 1
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Balanced periodic sequences

The word at position corresponding to fraction p/(p + q) has p 1’s and
q 0’s (hence length p + q).
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These words are Lyndon words—primitive and lexicogaphically
minimal among their rotations.

They also increase lexicographically left to right in each row.

Every balanced word of length p + q with exactly p 1’s is a rotation of
the word in the Farey diagram that corresponds to p/(p + q). There
are exactly p + q of them.
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Balanced periodic sequences

The word at position corresponding to fraction p/(p + q) has p 1’s and
q 0’s (hence length p + q).

The periodic sequence formed by each of these words is balanced.

These words are Lyndon words—primitive and lexicogaphically
minimal among their rotations.

They also increase lexicographically left to right in each row.

Every balanced word of length p + q with exactly p 1’s is a rotation of
the word in the Farey diagram that corresponds to p/(p + q). There
are exactly p + q of them.

Infinite nonperiodic Sturmian sequences are found as “ends" of
infinite paths in the Farey diagram.
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Farey Diagram of Blocks

0 1

0 01 1

0 001 01 011 1

0 0001 001 00101 01 01011 011 0111 1
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Times 2 map

Viewed as dyadic expansions, the words in the Farey diagram
correspond to periodic orbits under the map Tz = z2 on the circle.
Each orbit is contained in a closed semicircle, and T preserves the
cyclic order on the circle.
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The invariant measures coming from Sturmian minimal sets minimize
the integrals of strictly convex functions (over all T -invariant
measures with a fixed frequency of 1’s) (Jenkinson 2007).
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Times 2 map

Viewed as dyadic expansions, the words in the Farey diagram
correspond to periodic orbits under the map Tz = z2 on the circle.
Each orbit is contained in a closed semicircle, and T preserves the
cyclic order on the circle.

The invariant measures coming from Sturmian minimal sets minimize
the integrals of strictly convex functions (over all T -invariant
measures with a fixed frequency of 1’s) (Jenkinson 2007).

Besides Coven-Hedlund (1973) and Hedlund-Morse (1940), we
should also mention Jenkinson-Zamboni (2004), Arnoux (2002—in
Pytheas Fogg), Berstel-Séébold (2002—in Lothaire), Jenkinson
(1996–), Bullett-Sentenac (1994), Borel-Laubie (1993), Rauzy
(1985), Gambaudo-Lanford-Tresser (1984), Hedlund (1944),
Christoffel (1875), J. Bernoulli (1772), and probably others.
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Why does the concatenation work?

Prop: If u < v are Lyndon words, then uv is Lyndon.
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Parallelogram containing no interior lattice points

(5,2)(2,1)
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First part of coding of (7,3) follows (5,2)

0 1 0 1 0 1 0

(2,1)
(5,2)

(7,3)

0? 1?0 0 1 0 1
0 0 1 0 1
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Last part of coding of (7,3) follows translate of (2,1)

0 1 0 1 0 1 0

(2,1)
(5,2)

(7,3)

0? 1?0 0 1 0 1
0 0 1 0 1 0 ! 1 !

Queen Mary, U. of London, June 22, 2009 – p.15/37



Bratteli Diagrams

Infinite downward directed graphs

...k = 0 k = 1

Level (n)

0

1

2

3
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Bratteli Diagrams

Infinite downward directed graphs

Vertices, denoted by (n, k), are partitioned into levels, Vn

Edges connect vertices in consecutive levels

Incidence matrices describe the number of edges connecting levels n
and n + 1

...k = 0 k = 1

Level (n)

0

1

2

3

A1 =
[

1 1
]

A2 =

[

1 2

1 1

]

A3 =

[

1 2

1 1

]
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The Path Space

X is the space of infinite edge paths down from the root.
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connects a vertex in level i to a vertex in level i + 1.
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The Path Space

X is the space of infinite edge paths down from the root.

For x = x0x1x2 · · · ∈ X denote by xi the i’th edge of x, which
connects a vertex in level i to a vertex in level i + 1.

X is a compact metric space with metric given by:
For x, y ∈ X, d(x, y) = 2−i where i = inf{j|xj 6= yj}.
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Edge ordering yields a partial order on the set of paths

Level n

0

1

2

3
k=0 k=1 k=2 k=3
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Edge ordering yields a partial order on the set of paths

Level n

0

1

2

3
k=0 k=1 k=2 k=3

Define y > x if yn > xn the last time they differ.
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The adic transformation

T : X → X, Tx = smallest y > x if there is one.
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The adic transformation

T : X → X, Tx = smallest y > x if there is one.

Thanks to Sarah Bailey Frick for this animated introduction.
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Ideals in AF algebras

An AF algebra A is the closure of the increasing union of
finite-dimensional algebras An, each the direct sum of the matrix algebras
at level n of the Bratteli diagram.
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Ideals in AF algebras

An AF algebra A is the closure of the increasing union of
finite-dimensional algebras An, each the direct sum of the matrix algebras
at level n of the Bratteli diagram.

The edges of the diagram indicate embeddings of lower-dimensional
matrix algebras in higher-dimensional ones.

A (two-sided norm-closed) ideal in A is determined by a subdiagram Λ
with the following two properties:

Closed under successors: If (n, i) ∈ Λ and (n, i) ց (n + 1, j), then
(n + 1, j) ∈ Λ;

Closed under ancestors: If (n + 1, j) ∈ Λ for all j such that (n, i) ց

(n + 1, j), then (n, i) ∈ Λ.
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Ideal conditions

Queen Mary, U. of London, June 22, 2009 – p.21/37



Ideal conditions

(n, i)

(n + 1, j)
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Ideal conditions

(n, i)

(n + 1, j)

(n, i)

(n + 1, j1) (n + 1, j2) . . . (n + 1, jr) . . . (n + 1, js)
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Primitive ideals in A

A (two-sided norm-closed) ideal I ⊂ A is primitive if and only if there are
not ideals I1, I2 in A, both different from I, such that I = I1 ∩ I2.
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Primitive ideals in A

A (two-sided norm-closed) ideal I ⊂ A is primitive if and only if there are
not ideals I1, I2 in A, both different from I, such that I = I1 ∩ I2.

In terms of the diagram Λ determining I, this means that if
(n, i), (m, j) /∈ Λ, then there are p ≥ n, m and (p, k) /∈ Λ such that
(n, i) ց (p, k) and (m, j) ց (p, k).
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Ideals and invariant sets

Ideals of an AF algebra correspond to closed invariant sets of the
Bratteli-Vershik transformation on the path space of the diagram.
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Ideals and invariant sets

Ideals of an AF algebra correspond to closed invariant sets of the
Bratteli-Vershik transformation on the path space of the diagram.

Primitive ideals of an AF algebra correspond to topologically
transitive closed invariant sets of the Bratteli-Vershik transformation
on the path space of the diagram.
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Subadics of the Farey diagram

Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic
transformation on the metric space of infinite paths.
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Subadics of the Farey diagram

Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic
transformation on the metric space of infinite paths.

The following observations were stimulated by a talk by O. Jenkinson, are
based on papers by O. Bratteli and F. Boca, and were developed in
conversations with T. de la Rue and E. Janvresse.

For rational rotation number θ (the frequency of 1’s), there are 3
topologically transitive subadics, each containing a unique minimal set,
isomorphic to a translation on a finite cyclic group.

For irrational rotation number θ, there is a single minimal subadic,
isomorphic to the Sturmian system with that number.

These closed invariant subsets correspond to primitive ideals of the ap-

proximately finite C∗ algebra determined by the Farey Bratteli diagram.
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Farey diagram again
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The orbit of 1/3 ∼ 001001001001 · · · = 1/7

·
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Mapping 1/3 ∼ 001001001001 · · · = 1/7

·
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Mapping 1/3 ∼ 001001001001 · · · = 1/7
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An orbit forward asymptotic to that of 1/3 ∼ 1/7

·
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An orbit forward asymptotic to that of 1/3 ∼ 1/7
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An orbit forward asymptotic to that of 1/3 ∼ 1/7
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An orbit forward asymptotic to that of 1/3 ∼ 1/7

·
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An orbit forward asymptotic to that of 1/3 ∼ 1/7
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The diagram (non-red) of one ideal for 1/3 ∼ 001 ∼ 1/7

·
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The diagram (non-red) of another ideal for 1/3 ∼ 001 ∼ 1/7

·
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Ideal and orbit closure for θ = [2, 3, 2, 4, . . . ]

·
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β-shifts

Fix β > 1, let d = ⌈β⌉, and D = {0, 1, . . . , d − 1}.
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β-shifts

Fix β > 1, let d = ⌈β⌉, and D = {0, 1, . . . , d − 1}.

Let Σ+
β ⊂ DN denote the closure of the set of all greedy expansions

base β of all x ∈ [0, 1],

x =
a1

β
+

a2

β2
+ . . .
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β-shifts

Fix β > 1, let d = ⌈β⌉, and D = {0, 1, . . . , d − 1}.

Let Σ+
β ⊂ DN denote the closure of the set of all greedy expansions

base β of all x ∈ [0, 1],

x =
a1

β
+

a2

β2
+ . . .

(Σ+
β , σ) is a symbolic coding (lift) of the β-transformation

Tβ : [0, 1] → [0, 1] defined by Tβx = βx mod 1.
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β-shifts

Fix β > 1, let d = ⌈β⌉, and D = {0, 1, . . . , d − 1}.

Let Σ+
β ⊂ DN denote the closure of the set of all greedy expansions

base β of all x ∈ [0, 1],

x =
a1

β
+

a2

β2
+ . . .

(Σ+
β , σ) is a symbolic coding (lift) of the β-transformation

Tβ : [0, 1] → [0, 1] defined by Tβx = βx mod 1.

If the expansion a1a2 . . . of 1 base β is nonterminating, we put
eβ(1) = a1a2 . . . .
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β-shifts

Fix β > 1, let d = ⌈β⌉, and D = {0, 1, . . . , d − 1}.

Let Σ+
β ⊂ DN denote the closure of the set of all greedy expansions

base β of all x ∈ [0, 1],

x =
a1

β
+

a2

β2
+ . . .

(Σ+
β , σ) is a symbolic coding (lift) of the β-transformation

Tβ : [0, 1] → [0, 1] defined by Tβx = βx mod 1.

If the expansion a1a2 . . . of 1 base β is nonterminating, we put
eβ(1) = a1a2 . . . .

Otherwise there is a first i for which T i
β1 = n ∈ N, and then we put

eβ(1) = [a1 . . . ai−1(n − 1)]∞.
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β-shifts and lexicographic order

A sequence a = a1a2 · · · ∈ DN is in Σ+
β if and only if σkx ≤ eβ(1) for

all k ≥ 0.
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β-shifts and lexicographic order

A sequence a = a1a2 · · · ∈ DN is in Σ+
β if and only if σkx ≤ eβ(1) for

all k ≥ 0.

A sequence a = a1a2 · · · ∈ DN is eβ(1) for some β if and only if it
dominates all its shifts: a ≥ σka for all k ≥ 0 (Parry, 1960).
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A doubly lexicographic map of the interval

Consider now a Sturmian symbolic dynamical system with rotation
number θ. It also has a lexicographically maximal element.
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A doubly lexicographic map of the interval

Consider now a Sturmian symbolic dynamical system with rotation
number θ. It also has a lexicographically maximal element.

Since M(θ) is lexicographically maximal in a subshift, it dominates all
its shifts and hence is the expansion eβ(1) of 1 base β for some
β = β(θ) ∈ (1, 2).
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A doubly lexicographic map of the interval

Consider now a Sturmian symbolic dynamical system with rotation
number θ. It also has a lexicographically maximal element.

Since M(θ) is lexicographically maximal in a subshift, it dominates all
its shifts and hence is the expansion eβ(1) of 1 base β for some
β = β(θ) ∈ (1, 2).

We define L : (0, 1] → (0, 1] by L(θ) = β(θ) − 1.
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The map L

The map L : (0, 1] → (0, 1] is strictly increasing.
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The map L

The map L : (0, 1] → (0, 1] is strictly increasing.

This is because β → eβ(1) is strictly increasing and each row of the
Farey diagram of blocks is strictly increasing.
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The map L

The map L : (0, 1] → (0, 1] is strictly increasing.

This is because β → eβ(1) is strictly increasing and each row of the
Farey diagram of blocks is strictly increasing.

For θ = 1/3, the minimal element is 001001001 . . . , the maximal
element is M(θ) = 100100100 · · · = (1[0,1/3)(n × 2/3)), and β(θ) is the
reciprocal of the solution of 1 = x + x4 + x7 + . . . , i.e. 1 = x + x3.
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The map L

The map L : (0, 1] → (0, 1] is strictly increasing.

This is because β → eβ(1) is strictly increasing and each row of the
Farey diagram of blocks is strictly increasing.

For θ = 1/3, the minimal element is 001001001 . . . , the maximal
element is M(θ) = 100100100 · · · = (1[0,1/3)(n × 2/3)), and β(θ) is the
reciprocal of the solution of 1 = x + x4 + x7 + . . . , i.e. 1 = x + x3.

For θ = 2/3, the minimal element is 011011011 . . . , the maximal
element is M(θ) = 110110110 · · · = (1[0,2/3)(n × 1/3)), and β(θ) is the
reciprocal of the solution of 1 = (x + x2)(1 + x3 + . . . ), i.e.
1 = x + x2 + x3.
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Some values of L

L(1/2) is the solution α of x + x2 = 1.
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Some values of L

L(1/2) is the solution α of x + x2 = 1.

L(Q) ⊂ algebraic numbers.
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Some values of L

L(1/2) is the solution α of x + x2 = 1.

L(Q) ⊂ algebraic numbers.
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Since the mapping L connects the lexicographic order properties of
Sturmian systems and β-shifts (and the interval), it may be
interesting to develop further its properties and those of the
dynamical system it defines.

I recently found out that in recent papers and preprints, DoYong
Kwon has defined and studied essentially the same function.
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