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Adic Systems and Symbolic Dynamics

Overview

I I will start with some (well-known) background on adic systems

I and propose a survey of joint work over several years with Xavier
Méla, Sarah Bailey Frick, Mike Keane, Ibrahim Salama, Alexander
Varchenko, Sandi Shields, et al.

I The focus will be on adic systems coming from random walks,
symbol counts, and reinforcement.

I We will aslo take a look at connections with tail fields for stochastic
processes and at an adic system that contains all Sturmian systems.

I We will mention some open problems along the way.

I Thanks to Xavier and Sarah for many of the pictures (as well as
results).
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Bratteli-Vershik (Adic) Systems

Definition

Bratteli Diagrams

I We start with an infinite downward directed graph.

I The vertices, denoted by (n, k), are partitioned into levels, Vn.

I Edges connect vertices in consecutive levels.

I Incidence matrices describe the numbers of edges connecting
vertices on levels n and n+ 1.

A1 =
[

1 1
]

A2 =

[
1 2
1 1

]
A3 =

[
1 2
1 1

]
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Definition

The path space

I X is the space of infinite edge paths.

I For x = x0x1x2 · · · ∈ X denote by xi the i’th edge of x which
connects a vertex in level i to a vertex in level i+ 1.

I X is a compact metric space with metric given by:
For x, y ∈ X, d(x, y) = 2−i where i = inf{j|xj 6= yj}.

I A cylinder set C = [c0c1c2 . . . cn] is a clopen set such that x ∈ C
implies x = c0c1 . . . cnxn+1 . . . .
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Definition

The adic transformation

I Two paths are comparable if they are cofinal—agree from some level
downward.

I x < y if at the last level where they differ, the edge of x precedes
that of y.

I Tx is defined to be the smallest y > x if there is one.

I There can be maximal paths for which T is not defined, but often
this set is at most countable and can be neglected when dealing
with nonatomic measures.

I There can also be minimal paths.

I Sometimes (e.g. if there is only one of each), maximal paths can be
mapped to minimal ones so as to produce a homeomorphism.

I The survey by Durand (in Berthé-Rigo 2010) is highly recommended.
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I The survey by Durand (in Berthé-Rigo 2010) is highly recommended.



Adic Systems and Symbolic Dynamics

Bratteli-Vershik (Adic) Systems

Definition

The adic transformation

I Two paths are comparable if they are cofinal—agree from some level
downward.

I x < y if at the last level where they differ, the edge of x precedes
that of y.

I Tx is defined to be the smallest y > x if there is one.

I There can be maximal paths for which T is not defined, but often
this set is at most countable and can be neglected when dealing
with nonatomic measures.

I There can also be minimal paths.

I Sometimes (e.g. if there is only one of each), maximal paths can be
mapped to minimal ones so as to produce a homeomorphism.
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Bratteli-Vershik (Adic) Systems

The adic as an action transverse to the shift

Adics and shifts

I The adic is transverse to the shift. In a self-similar tiling system,
translation is like the adic, while changing scale within the hierarchy
corresponds to the shift.

I The adic transformation is the successor map: it is like counting.

I The shift is like multiplication. In fact σx = 2x and Tx = x+ 1 on
two-sided binary sequences as coefficients of powers of 2.

I The maps T and σ are transverse, satisfying σT = T 2σ, same as
2(x+ 1) = 2x+ 2.

I This is analogous to hse−tgt = gths for the horocycle and geodesic
flows.
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Bratteli-Vershik (Adic) Systems

The adic as an action transverse to the shift

Invariant measures for shift vs. adic on SFT

I The unique invariant measure for the adic on a SFT ΣM assigns
equal measure to all cylinder sets determined by paths from the root
to a selected vertex.

I The measure of maximal entropy on ΣM assigns pretty much the
same measure to all cylinder sets of a fixed length.
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The adic as an action transverse to the shift

Zeckendorf Representation

Consider the Fibonacci sequence

(fn) = (1, 2, 3, 5, 8, 13, . . . )

Every x ∈ N has a unique representation x =
∑k
i=0 xifi with no

xixi+1 = 11.
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The adic as an action transverse to the shift

Golden mean odometer

Counting in this system corresponds to applying the adic transformation
on the following graph:

0 1
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Pascal by cutting and stacking
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The adic as an action transverse to the shift

Adics and tail fields

I Adic-invariant sets correspond to tail fields for the associated
stochastic processes.

I For the odometer, it’s the Kolmogorov tail field of sets invariant
under changes of finitely many coordinates.

I For the Pascal adic, it’s the field of symmetric sets invariant under
permutations of finitely many coordinates.

I So dynamical properties of the adic transformations (such as
ergodicity) correspond to 0,1 laws in probability (such as
Hewitt-Savage).

I Strengthenings of ergodicity (such as weak mixing) would therefore
imply new results in probability.
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The adic as an action transverse to the shift

Usefulness of adics

I Bratteli-Vershik diagrams can be read as instructions for cutting and
stacking procedures used to define maps of the interval in traditional
ergodic theory.

I Every ergodic measure-preserving system is isomorphic to a uniquely
ergodic adic system (Vershik 1981).

I Stationary Bratteli-Vershik systems ∼ odometers and substitution
symbolic dynamical systems (Vershik, Livshitz, Forrest,
Durand-Host-Skau).

I The adic representation suggests the use of C∗ ideas such as
dimension groups (Elliott 1976 and 1993, Effros-Handelman-Shen
1980)
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Bratteli-Vershik (Adic) Systems

Orbit equivalence

Representation of topological dynamical systems
I Herman, Putnam, Skau (1992): Minimal homeomorphisms of the

Cantor set are topologically conjugate to adic systems which are
simple (there is a telescoping with all positive transition matrices)
and have unique maximal and minimal paths.

I Medynets (2006): Every Cantor topological dynamical system
without periodic points has an adic representation (with a
well-defined Vershik map that is a homeomorphism mapping the set
of maximal paths to the set of minimal paths).

I Key tool: A topological Rohlin lemma using clopen sets as the levels.
I An earlier version was used by Denker (1972—see

Denker-Grillenberger-Sigmund 1976) to prove existence of a
topological generator for the closure of the complement of the set of
periodic points.

I A version in symbolic dynamics called the Marker Lemma is used to
prove the Krieger Embedding Theorem for SFT’s: There is an
embedding X → Y if and only if h(X) < h(Y ) and the periodic
points of X embed in those of Y—see Lind-Marcus (1995, Lemma
10.1.8, p. 343).
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Orbit equivalence of Cantor minimal systems

I Giordano-Putnam-Skau (1995) showed that two Cantor minimal
systems are topologically orbit equivalent if and only if their reduced
dimension groups are isomorphic as ordered groups with
distinguished order units.

I They are topologically strongly orbit equivalent if and only if their
dimension groups are isomorphic as ordered groups with
distinguished order units.

I (X1, T1) and (X2, T2) are strongly orbit equivalent if there is a
homeomorphism h : X1 → X2 such that the time change cocycles
a(x) and b(x) defined by

hT
a(x)
1 h−1x = T2x, h−1T

b(x)
2 h(x) = T1(x).

have at most one point of discontinuity each.



Adic Systems and Symbolic Dynamics

Bratteli-Vershik (Adic) Systems

Orbit equivalence

Orbit equivalence of Cantor minimal systems

I Giordano-Putnam-Skau (1995) showed that two Cantor minimal
systems are topologically orbit equivalent if and only if their reduced
dimension groups are isomorphic as ordered groups with
distinguished order units.

I They are topologically strongly orbit equivalent if and only if their
dimension groups are isomorphic as ordered groups with
distinguished order units.

I (X1, T1) and (X2, T2) are strongly orbit equivalent if there is a
homeomorphism h : X1 → X2 such that the time change cocycles
a(x) and b(x) defined by

hT
a(x)
1 h−1x = T2x, h−1T

b(x)
2 h(x) = T1(x).

have at most one point of discontinuity each.



Adic Systems and Symbolic Dynamics

Bratteli-Vershik (Adic) Systems

Orbit equivalence

Orbit equivalence of Cantor minimal systems

I Giordano-Putnam-Skau (1995) showed that two Cantor minimal
systems are topologically orbit equivalent if and only if their reduced
dimension groups are isomorphic as ordered groups with
distinguished order units.

I They are topologically strongly orbit equivalent if and only if their
dimension groups are isomorphic as ordered groups with
distinguished order units.

I (X1, T1) and (X2, T2) are strongly orbit equivalent if there is a
homeomorphism h : X1 → X2 such that the time change cocycles
a(x) and b(x) defined by

hT
a(x)
1 h−1x = T2x, h−1T

b(x)
2 h(x) = T1(x).

have at most one point of discontinuity each.



Adic Systems and Symbolic Dynamics

Bratteli-Vershik (Adic) Systems

Orbit equivalence

Dimension group

The dimension group G of an adic system is the direct limit of

Z→M1 Z|V(1)| →M2 Z|V(2)| →M3 . . .

I Namely, the quotient of

P = {v ∈
∏
n≥0

Z|V(n)| : Mnvn = vn+1 for all large enough n}

by
{v ∈ P : vn = 0 for all large enough n}.

I It is isomorphic to C(X,Z)/∂C(X,Z), where
∂C(X,Z) = {f − fT : f ∈ C(X,Z)}.
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Orbit equivalence

Measures and infinitesimals

I T -invariant measures on X correspond to states or traces—group
homomorphisms φ : G→ R such that φ(G+) ⊂ [0,∞] and φ(u) = 1
by φµ[f ] =

∫
X
fdµ (f ∈ C(X,Z).

I The infinitesimals in G are

Inf(G) = {g ∈ G : ng < u for all n ∈ Z}
= {g ∈ G : φ(g) = 0 for all traces φ}

= {[f ] :

∫
X

fdµ = 0 for every invariant measure µ}.

I The reduced dimension group is G/Inf(G).
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Orbit equivalence

Some important recent work on adics

I Pursuing work and conjectures of Boyle and Handelman (1994),
Ormes (1997) proved realizability of given ergodic
measure-preserving systems within topological orbit equivalence and
strong topological orbit equivalence classes of Cantor minimal
systems.

I We are given an ergodic nonatomic measure-preserving system
(Y, S, ν) and a Cantor minimal system (X,T1) and want to find a
topological realization:

I a Cantor minimal system (X,T2) which is topologically strongly
orbit equivalent to (X,T1) and has an invariant measure µ2 that
makes it measure-theoretically isomorphic to the given (Y, S, ν).

I Ormes’ Strong Orbit Realization Theorem says that this is possible
exactly when the continuous rational point spectrum of T1 is
contained in the point spectrum of (Y, S, ν).
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Orbit equivalence

I Moreover, given also an ergodic T1-invariant measure µ1, one can
arrange that the o.e. mapping h between T1 and T2 is the identity,
and µ2 = µ1.

I For topological orbit equivalence, the condition about embedding of
rational point spectrum is not needed: Ormes’ Orbit Realization
Theorem says that, given (X,T1) and (Y, S, ν) as above, and a
T1-invariant measure µ2, there is a Cantor minimal (X,T2) that is
topologically orbit equivalent to (X,T1) and such that (X,T2, µ2) is
measure-theoretically isomorphic to (Y, S, ν).
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Orbit equivalence

I A corollary of SORT is a topological version of Dye’s Theorem: any
two ergodic nonatomic systems have topologically strongly orbit
equivalent realizations as minimal homeomorphisms of the Cantor
set with the same invariant measure.

I Also, within the topological strong orbit equivalence class of each
uniquely ergodic Cantor minimal system one can find all entropies in
[0,∞]. (Extending results of Boyle-Handelman 1994, Sugisaki 1996
showed this for general minimal Cantor systems).

I This was generalized by Kornfeld and Ormes in 2006 to show that
isomorphic copies of any at most countable family of m.p.t’s can be
found within the o.e. class of any Cantor minimal system:

I Given an at most countable family of a ergodic m.p.t.’s on
nonatomic Lebesgue probability spaces and a Cantor minimal system
(X,T1) with at least a ergodic measures, for any a of these measures
there is T2 on X that is o.e. to T1 and with respect to each measure
measure-theoretically isomorphic to its corresponding given m.p.t.

I Strong orbit equivalence is achieved under conditions as before on
rational point spectrum.



Adic Systems and Symbolic Dynamics

Bratteli-Vershik (Adic) Systems

Orbit equivalence

I A corollary of SORT is a topological version of Dye’s Theorem: any
two ergodic nonatomic systems have topologically strongly orbit
equivalent realizations as minimal homeomorphisms of the Cantor
set with the same invariant measure.

I Also, within the topological strong orbit equivalence class of each
uniquely ergodic Cantor minimal system one can find all entropies in
[0,∞]. (Extending results of Boyle-Handelman 1994, Sugisaki 1996
showed this for general minimal Cantor systems).

I This was generalized by Kornfeld and Ormes in 2006 to show that
isomorphic copies of any at most countable family of m.p.t’s can be
found within the o.e. class of any Cantor minimal system:

I Given an at most countable family of a ergodic m.p.t.’s on
nonatomic Lebesgue probability spaces and a Cantor minimal system
(X,T1) with at least a ergodic measures, for any a of these measures
there is T2 on X that is o.e. to T1 and with respect to each measure
measure-theoretically isomorphic to its corresponding given m.p.t.

I Strong orbit equivalence is achieved under conditions as before on
rational point spectrum.



Adic Systems and Symbolic Dynamics

Bratteli-Vershik (Adic) Systems

Orbit equivalence

I A corollary of SORT is a topological version of Dye’s Theorem: any
two ergodic nonatomic systems have topologically strongly orbit
equivalent realizations as minimal homeomorphisms of the Cantor
set with the same invariant measure.

I Also, within the topological strong orbit equivalence class of each
uniquely ergodic Cantor minimal system one can find all entropies in
[0,∞]. (Extending results of Boyle-Handelman 1994, Sugisaki 1996
showed this for general minimal Cantor systems).

I This was generalized by Kornfeld and Ormes in 2006 to show that
isomorphic copies of any at most countable family of m.p.t’s can be
found within the o.e. class of any Cantor minimal system:

I Given an at most countable family of a ergodic m.p.t.’s on
nonatomic Lebesgue probability spaces and a Cantor minimal system
(X,T1) with at least a ergodic measures, for any a of these measures
there is T2 on X that is o.e. to T1 and with respect to each measure
measure-theoretically isomorphic to its corresponding given m.p.t.

I Strong orbit equivalence is achieved under conditions as before on
rational point spectrum.



Adic Systems and Symbolic Dynamics

Bratteli-Vershik (Adic) Systems

Orbit equivalence

I A corollary of SORT is a topological version of Dye’s Theorem: any
two ergodic nonatomic systems have topologically strongly orbit
equivalent realizations as minimal homeomorphisms of the Cantor
set with the same invariant measure.

I Also, within the topological strong orbit equivalence class of each
uniquely ergodic Cantor minimal system one can find all entropies in
[0,∞]. (Extending results of Boyle-Handelman 1994, Sugisaki 1996
showed this for general minimal Cantor systems).

I This was generalized by Kornfeld and Ormes in 2006 to show that
isomorphic copies of any at most countable family of m.p.t’s can be
found within the o.e. class of any Cantor minimal system:

I Given an at most countable family of a ergodic m.p.t.’s on
nonatomic Lebesgue probability spaces and a Cantor minimal system
(X,T1) with at least a ergodic measures, for any a of these measures
there is T2 on X that is o.e. to T1 and with respect to each measure
measure-theoretically isomorphic to its corresponding given m.p.t.

I Strong orbit equivalence is achieved under conditions as before on
rational point spectrum.



Adic Systems and Symbolic Dynamics

Bratteli-Vershik (Adic) Systems

Orbit equivalence

I A corollary of SORT is a topological version of Dye’s Theorem: any
two ergodic nonatomic systems have topologically strongly orbit
equivalent realizations as minimal homeomorphisms of the Cantor
set with the same invariant measure.

I Also, within the topological strong orbit equivalence class of each
uniquely ergodic Cantor minimal system one can find all entropies in
[0,∞]. (Extending results of Boyle-Handelman 1994, Sugisaki 1996
showed this for general minimal Cantor systems).

I This was generalized by Kornfeld and Ormes in 2006 to show that
isomorphic copies of any at most countable family of m.p.t’s can be
found within the o.e. class of any Cantor minimal system:

I Given an at most countable family of a ergodic m.p.t.’s on
nonatomic Lebesgue probability spaces and a Cantor minimal system
(X,T1) with at least a ergodic measures, for any a of these measures
there is T2 on X that is o.e. to T1 and with respect to each measure
measure-theoretically isomorphic to its corresponding given m.p.t.

I Strong orbit equivalence is achieved under conditions as before on
rational point spectrum.



Adic Systems and Symbolic Dynamics

Bratteli-Vershik (Adic) Systems

Other recent work

I Downarowicz and Maass (ETDS 2008) showed that a Cantor
minimal system of finite topological rank (one that is topologically
conjugate to a simple (has a telescoping with positive incidence
matrices) properly ordered (unique maximal and minimal paths) adic
system with a uniformly bounded number of vertices on each level)
is either topologically conjugate to an odometer (i.e. has topological
rank 1) or else is expansive (i.e. is topologically conjugate to a
subshift determined by coding paths according to initial segments of
a fixed length).

I Bezuglyi, Kwiatkowski, and Medynets (2009) studied aperiodic
(non-primitive) substitution systems by means of their adic
representations and showed that they have stationary adic
representations and are recognizable.

I They also extended the Downarowicz-Maass result to aperiodic
Cantor systems of finite rank, proving that either they are expansive
or else all of their minimal components are topologically conjugate
to odometers.
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Other recent work

I Gjerde-Johanssen (2000) Characterized the adic systems that
represent Toeplitz subshifts.

I Recall that a Toeplitz sequence (Jacobs-Keane 1969) is a sequence
ω ∈ AZ such that for each n there is p such that ωn = ωn+jp for all
j ∈ Z. The orbit closure of a Toeplitz sequence is a Toeplitz system.
These are exactly the minimal subshifts that are almost one-to-one
extensions of odometers.

I Gjerde and Johanssen showed that a minimal subshift is a Toeplitz
system if and only if it is topologically conjugate to an expansive
adic system that has the equal path number property: for all n ≥ 1,
each vertex in V(n) has the same number of entering edges from
V(n− 1). (But the EPN property does not imply expansive nor
equicontinuous.)
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Other recent work

I Bezuglyi-Kwiatkowski-Yassawi (2012) studied arbitrary reorderings
of adic systems, seeking to determine for which ones the adic
transformation can be defined as a homeomorphism—the “perfect”
orders.

I Such (nondegenerate) adic systems represent all aperiodic
homeomorphisms of the Cantor set.

I Earlier, Medynets (2006) had given an example of a diagram for
which no ordering is perfect.

I Bezuglyi-Kwiatkowski-Yassawi showed that for a uniformly random
reordering of an adic system of finite rank r, there is J ∈ {1, . . . , r}
such that almost every ordering has J maximal and J minimal paths.

I And if J is greater than the number of minimal components, then
almost every ordering is not perfect.

I Bezuglyi-Yassawi (2013) studied in detail orderings beyond the finite
rank case and gave necessary and sufficient conditions for a diagram
to admit a perfect ordering.

I Yassawi and Janssen (2014) produce a class of infinite rank
diagrams similar to those of Toeplitz systems for which J =∞.
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I Earlier, Medynets (2006) had given an example of a diagram for
which no ordering is perfect.

I Bezuglyi-Kwiatkowski-Yassawi showed that for a uniformly random
reordering of an adic system of finite rank r, there is J ∈ {1, . . . , r}
such that almost every ordering has J maximal and J minimal paths.

I And if J is greater than the number of minimal components, then
almost every ordering is not perfect.

I Bezuglyi-Yassawi (2013) studied in detail orderings beyond the finite
rank case and gave necessary and sufficient conditions for a diagram
to admit a perfect ordering.

I Yassawi and Janssen (2014) produce a class of infinite rank
diagrams similar to those of Toeplitz systems for which J =∞.
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Other recent work

I Hamachi-Keane-Roychowdhury (2008) proved that Dye’s Theorem
holds in the finitary category: Any two adic systems with nonatomic
invariant ergodic probabilities are finitarily orbit equivalent.

I Rudolph, Roychowdhury, del Junco, Weiss, Şahin, Dykstra, and
Springer studied finitary and “nearly continuous” or “almost
continuous” orbit and Kakutani equivalence.

I Frank-Sadun (in progress) define “fusion tiling systems”, which can
be viewed as generalized higher-dimensional adic actions—analogous
to the translation action of R on the space of tilings of the line
generated by a substitution such as 0→ 01, 1→ 0.
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Other recent work

I “Finitary” means that after an invariant set of measure 0 is removed,
the map is a homeomorphism (between topological spaces). For
maps between subshifts, this means that almost surely each symbol
in the output depends only on a variable-length window in the input.

I “Nearly continuous” or “almost continuous” means that the map is
a homeomorphism once restricted to invariant Gδ sets of full
measure (in a Polish space).
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Other recent work

Some current work on arbitrary orderings

I Sarah Bailey Frick, Sandi Shields, and I are also considering
properties of arbitrary orderings of Bratteli diagrams.

I Xavier Méla (2002) proved that the Pascal adic system is essentially
expansive: any infinite paths not in a countable invariant set can be
distinguished by their codings according to the first edge

I Sarah Bailey (2006) extended this to a wide class of “scope 1”
systems, which includes her polynomial systems and the Eulerian
adic discussed later.

I We think that now we can prove that the Pascal with any ordering is
essentially expansive in this sense.

I There are orderings of the Pascal graph with uncountably many
maximal and minimal paths, although for each ordering and each
invariant probability the set of maximal and minimal paths has
measure 0.
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I We are also trying to estimate the asymptotic complexity for the
coding of each ordering, as well as the expected asymptotic
complexity—more about this later.

I We are also starting to study the “large subshift”: the closure of the
union of the subshifts from codings of all adics coming from
orderings of the Pascal graph.
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Symbol count adics

Higher-dimensional Pascal

I We can think of walks in higher dimensions. p(x, y, z) = x+ y + z

I The number of paths from (0, 0, 0) to (a, b, c) is the coefficient of
xaybzc in (p(x, y, z))a+b+c

I the three-dimensional Pascal has three ”normal” Pascal adics as
invariant sets.

I The ergodic invariant measures are given by weights α, β, γ on the
edges.
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Adic Systems from Walks on Graphs

Reinforced Random Walk Adics

Reinforced random walk (or urn model)

I Reinforcement scheme on a finite directed graph: For each edge e
we have ve ∈ Z2

+ that tells what to add to the weights on the edges.

I Start with initial vector vi = (s, s), corresponding to equal
probability of each edge

I As edge e is traversed, add ve to the accumulated sum of the vi and
normalize to obtain the probabilities of taking each edge. This
defines the walk measure.
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The Eulerian Adic

Finding ergodic measures

Counting paths: dim(C, xn) and dim(xn)

I Let dim(xn) be the number of finite paths from the root vertex to
vertex through which the path x passes at level n.

I For any cylinder C, let dim(C, xn) be the number of paths in C
that agree with xn after level n.

I Theorem (Vershik)
If (X,T ) is a Bratteli-Vershik system and µ is an ergodic, T -invariant
measure on X, then for any cylinder C ⊂ X and µ-a.e. x,

lim
n→∞

dim(C, xn)

dim(xn)
= µ(C).

I Proved by Ergodic Theorem or Reverse Martingale Theorem.

I Also can use generalized Perron-Frobenius Theorem, as with
substitutions.
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Proofs of ergodicity and unique fully supported ergodicity of the walk measure on the Eulerian adic

Ergodicity of the walk measure on the Eulerian adic

I Ergodicity was proved by Frick, Keane, KP, Salama, using a
supermartingale argument.

I Unique fully supported ergodicity was proved by Frick, KP, using a
coding of paths by permutations.

I We also learned of related results about the Eulerian graph by
Alexander Gnedin and Grigori Olshanski, from the point of view of
Martin boundaries.

I A second proof of unique fully supported ergodicity was found by KP
and A. Varchenko with hopes to extend it to more dimensions.

I This approach, via a formula for generalized Eulerian numbers, also
identifies the generic paths for η and yields convergence of the
dimension quotients in sectors rather than along a.e. path.
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The Eulerian Adic

First proof of ergodicity—the collision argument

Dynamics of the Euler adic

Theorem (Bailey-Keane-KP-Salama)
The symmetric measure η is ergodic.

By the Ergodic Theorem, or Reverse Martingale Theorem (Vershik), for
each cylinder set C ending in a fixed vertex λ,

dim(λ, tj)

dim(tj)
→ E(χC |I) a.e.

To prove erodicity, we just need to show the limit is constant a.e..
For the Pascal adic this is not hard, because of properties of binomial
coefficients or isotropy of the graph (Méla).
For the Eulerian numbers, it’s much harder.
Instead we adapted Mike Keane’s approach to prove ergodicity of the
Bernoulli 1/2, 1/2 measure for the Pascal adic.
(Previous proofs for the Pascal were given by Hajian-Ito-Kakutani (1972),
and Vershik.)
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First proof of ergodicity—the collision argument

Collision property

Proposition
For η × η-almost every (x, y) ∈ X ×X, there are infinitely many n such
that the cylinders In(x) and In(y) end in the same vertex of the Euler
graph.
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The Eulerian Adic

First proof of ergodicity—the collision argument

Lemmas for the Proposition

Lemma
On (X ×X, η × η) let Dn(x, x′) = |kn(x)− kn(x′)|. Let
Fn = B((x1, x

′
1), . . . , (xn, x

′
n)) denote the σ-algebra generated by

(x1, x
′
1), (x2, x

′
2), ..., (xn, x

′
n). Then (Dn) is a supermartingale with

respect to (Fn).

The proof is by direct computation, using the weights on the edges that
determine the measure η.

This lemma expresses the central tendency of the infinite paths in the
Euler graph: paths close to the edge tend toward the center with greater
probability the closer they are to the edge.
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First proof of ergodicity—the collision argument

Convergence of probabilities

Lemma
kn(x)

n
→ 1

2
in measure.

Proof: Direct computation of the variance, Chebyshev’s Inequality.
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The Eulerian Adic

Second proof: Unique fully supported ergodicity from coding by permutations

Uniqueness

Theorem (Bailey-KP)
The symmetric measure η is the only fully supported ergodic invariant
Borel probability measure for the Euler adic transformation.

Interpretation: If any two permutations of the same length with the same
number of rises are equally likely, and every permutation has positive
probability, then all permutations of a given length are equally likely.
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Counting paths

(n,k)

n 0

C’
C
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The Euler graph and random permutations
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Path leaving (n, k) to the left ∼ inserting n+ 2 at a place where it
creates a new fall.

A(n+ 1, k) = (n− k + 2)A(n, k − 1) + (k + 1)A(n, k).

The space X of infinite paths ∼ the set of all linear orderings of N.
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Cylinders and permutations

3

4

5

2

3

4

1

2

3

1

21

3

4

5

2

3

4

1

2

3

1

2 1

213

231

21

321

12

123
312

132

2F 2R1F,1R



Adic Systems and Symbolic Dynamics

The Eulerian Adic

Second proof: Unique fully supported ergodicity from coding by permutations

Cylinders

Let µ be an ergodic invariant measure for the Euler adic.

Consider cylinder sets C1 and C2 of the same length, n0.

They correspond to permutations π(C1) and π(C2) of 1, 2, . . . , n0 + 1,
and to paths of length n0 down from the root.
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Dimensions

dim(xn) = the number of paths from the root to the vertex (n, kn(x))
dim(C1, xn) = the number of paths from the bottom end of C1 to
(n, kn(x))

We know that

dim(C1, xn)

dim(xn)
→ Eµ(χC1

|I)(x) = µ(C1) a.e.,

and similarly for C2.
So we aim to show that

dim(C1, xn)

dim(C2, xn)
→ 1 a.e..

This does involve asymptotics of the Eulerian numbers A(n, k), but we
claim we can get the result without knowing too much.
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Permutations

I Each path from the end of C1 to (n, k) corresponds to a permutation
of 1, . . . , n+ 1 in which 1, . . . , n0 + 1 appear in the order π(C1).

I We obtain each such permutation by starting with a permutation of
n0 + 2, . . . , n+ 1 and inserting 1, . . . , n0 + 1 in the order prescribed
by π(C1).

I And we are supposed to end up with a permutation of 1, . . . , n+ 1
which has exactly k rises and n− k falls.

I If no two elements of 1, . . . , n0 + 1 are placed consecutively, we have
n0 + 1 choices for where to put them (in a rise, in a fall, at the
beginning or end).

I And the effect on the number of rises and falls is the same for π(C1)
as for π(C2)—putting any i ≤ n0 + 1 into a fall or at the beginning
produces a new rise, putting it into a rise or at the end produces a
new fall (and the number of rises does not change).
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Asymptotics

I In counting dim(C1, xn) we see Eulerian numbers A(n− (n0 + 1), j),
with coefficients of various degrees in k and n− k.

I For example, if all of 1, . . . , n0 + 1 are to be inserted into rises or at
the end, there are
C(k + 1, n0 + 1) = (k + 1)k · · · (k − n0 + 1)/(n0 + 1)! choices for
the set of places, and the number of rises will stay fixed at k.

I Similarly, if we insist that a certain number of 1, . . . , n0 + 1 be
placed into separate rises or at the end, and the rest into separate
falls or at the beginning, we again find a product of n0 + 1 factors
on the order of k or n− k.

I But if we allow some of 1, . . . , n0 + 1 to be placed adjacently, we
will obtain a lower degree product.

I Thus the coefficients of each A(n− (n0 + 1), j) of highest degree
(in k and n− k) are the same for π(C1) and π(C2), and so
dim(C1, xn)/dim(C2, xn)→ 1, provided that k, n− k →∞ .
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Comparing µ(C1) and µ(C2)

I We will compare
µ(C1)

µ(C2)
when C1 and C2 are of the same length, n0.

I dim(C1, (n, k)) is dominated by permutations in which π(C1) is
”broken up”

I π(C1) is ”broken up” in 41752638

I This term is the same for cylinders of the same length.

I Hence
µ(C1)

µ(C2)
= 1, and µ must be the symmetric measure. �

I 41752638 and 43751628 have the same number of rises.
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Conclusion of the proof that η is ergodic

Suppose that in the preceding we assume not that µ is ergodic, just that
k, n− k →∞ with probability 1.

We have shown that then for any two cylinders C1, C2 of the same length,

Eµ(χC1 |I)(x) = Eµ(χC2 |I)(x) a.e.,

and integrating gives µ(C1) = µ(C2), so that µ = η.

We can show that there must be an ergodic measure which has k and
n− k unbounded a.e., and then it will follow that η is ergodic.
This constitutes a proof by the asymptotics of the Eulerian numbers,
different from the random-walk and supermartingale one.
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Third proof: Unique fully supported ergodicity from a formula for generalized Eulerian numbers

A formula generalizing the one for Eulerian numbers.

Theorem (KP-A. Varchenko)
For p ≥ 0, q ≥ 1, and i, j ≥ 0, let Bp,q(j + i, i) denote the number of
paths in the Euler graph from the vertex (p+ q, q) to the vertex
(p+ j + q + i, q + i). Then for all p, q, i, j we have

Bp,q(j + i, i) =

i∑
t=0

(−1)i−t
(
p+ q + t

t

)(
p+ q + j + i+ 1

i− t

)
(q + t)j+i.

First we proved this (in a simple case) by using Abel’s Identity:

(x+ y)n =
n∑
k=0

(
n

k

)
x(x− kz)k−1(y + kz)n−k for all x, y, z.

Then we got a much shorter argument, satisfying boundary conditions
for a recurrence equation by checking equality of two degree i
polynomials in p at i+ 1 points.
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Second key: a one-to-one correspondence

Let P0 and P1 be two vertices at the same level n0 in the Euler graph.

From each of P0, P1 there are n0 + 1 edges out, but ki to the left i = 0, 1.

P0(n0, k0) P1(n0, k1)

(n0 + 1, k0)

k0

(n0 + 1, k0 + 1)

n0−k0+1

(n0 + 1, k1)

k1

(n0 + 1, k1 + 1)

n0−k1+1

If we take a path down from each Pi that has ki + L edges to the left,
n0 − ki + 1 +R to the right, we end up at the same vertex, P ,
because the k coordinate of each path is then
k0 + (n0 − k0 + 1) +R = k1 + (n0 − k1 + 1) +R: the offset exactly
compensates for the different numbers of edges to the right.
So we set up a dynamic labeling of paths below P0 and P1 that
effectuates a one-to-one correspondence between such good paths.
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Third key: A double induction

To show that the set of paths from P0 that fail ever to select a colored
edge to the right is relatively small,

we want to show that

Bp,q(j + i, i)

Bp−1,q(j + i, i)
→∞ as i, j →∞.

(Avoiding an edge to the right equals shifting the box up one–easy for
Pascal)

For fixed i, from our formula the limit is
p+ q + i

p+ q
,

and it’s a decreasing limit down each column.
But to conclude, we need for example that the ratios increase along rows.
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The Eulerian Adic

Third proof: Unique fully supported ergodicity from a formula for generalized Eulerian numbers

Double induction with multiples

Let us consider four adjacent vertices in the graph,

y = (p+ j + q + i, q + i), Q = (p+ j + q + i+ 1, q + i+ 1),

x = (p+ j + 1 + q + i, q + i), P = (p+ j + 1, q + i+ 1, q + i+ 1).

Abbreviate Bp,q(j + i, i) at these points by By, etc., and
Bp−1,q(j + i, i) by B′y, etc.

y
p+j+1

p+j

q+iq+i

Q

q+i+1q+i+1

x
p+j+2

p+j+1
P

Proposition
For all i, j ≥ 0, we
have

BQ
B′Q
≥ p+ j + 1

p+ j

By
B′y

and
Bx
B′x
≤ By
B′y

.
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The Eulerian Adic

Towards the Higher-Dimensional Euler

Asymmetric reinforcement

I Consider now a random walk on the graph Gn+1 consisting of n+ 1
loops at a single vertex, with a different kind of opposite
reinforcement.

I When the walker takes a step in the direction of en+1, the numbers
of edges in all the other directions (ej for j = 1, . . . , n) are
incremented by 1;

I but when the walker takes a step in the direction of ej for some
j = 1, . . . , n, only the number of edges in the direction of en+1 is
incremented by 1.

I Studying the asymptotic growth rate of path counts in the resulting
adic diagram leads us to an identity involving two special kinds of
polynomials.

I This in turn has as a corollary an identity relating Stirling numbers
of the first and second kinds:
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The Eulerian Adic

Towards the Higher-Dimensional Euler

An identity involving Stirling numbers

For 1 ≤ k ≤ n, 0 ≤ r ≤ k,(
r + n− k − 1

r

)
s1(n, r + n− k) =

k∑
m=0

(
m+ n− k
m+ 1

) r∑
i=0

(
i+ n− k +m− 1

i

)
(−1)m+r−i

nr−i+1
(r − i+ 1)! ×

s2(m+ 1, r − i+ 1)s1(n, i+ n− k +m),



Adic Systems and Symbolic Dynamics

Hitting Densities (Boundaries)

Hitting densities (boundaries)

I Ergodic decomposition of the walk measure is related to asymptotic
edge traversal frequencies.

I Sometimes this has a density on the simplex—e.g., for positive
reinforcement (Coppersmith-Diaconis, Keane-Rolles).

I Other reinforcement schemes lead to other interesting examples,
such as the Stirling system that comes from always reinforcing to
the left (Salama).

I More complicated graphs

I Shift-of-finite-type restrictions

I Applications back to random walks?
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Hitting Densities (Boundaries)

Edge traversal densities and ergodic decomposition

I Adic-invariant walk measures are exchangeable, hence partially
exchangeable (as are all positively reinforced walk measures).

I So by Diaconis-Freedman, they are mixtures of Markovs, hence
edge-traversal frequencies exist.

I Coppersmith-Diaconis said, and Keane-Rolles proved, they are
absolutely continuous with respect to Lebesgue measure on the
simplex

I and gave a formula for the density.

I We can interpret this formula in terms of the ergodic decomposition
of the walk measure, when it is adic-invariant.
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Hitting Densities (Boundaries)

Density computation for s, (a, 0), (0, a)
E = {µα : 0 ≤ α ≤ 1}

µα(any path to (n, k)) = αk(1− α)n−k,

w(n, k) = {s(a+ s) . . . [(n− k − 1)a+ s] · s(a+ s) . . . [(k − 1)a+ s]}−1

= sga,s(n− k) · ga,s(k).

η(any path to (n, k)) =

∫ 1

0

fa,s(α)µα(any path to (n, k)) dα

Use approximate identity (via Euler’s beta integral)

pn,k(α) = (n+ 1)C(n, k)αk(1− α)n−k

(peaks at α0 as k/n→ α0)
to get at fa,s.
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Hitting Densities (Boundaries)

Integral formula for the density

Since η(any path to (n, k)) = 1/(2sga,2s(n)),

(n+ 1)

∫ 1

0

fa,s(α)C(n, k)αk (1− α)n−k dα

= (n+ 1)C(n, k)
η(any path to (n, k))

w(n, k)

= (n+ 1)C(n, k)
2sga,2s(n)

s ga,s(n− k) sga,s(k)
.

Apply Euler-Maclaurin summation to the logarithms of the products on
the right
and take the limit as n→∞, k/n→ α.
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Hitting Densities (Boundaries)

Formula for the density when vL = (a, 0), vR = (0, a)

fa,s(α) =
s√
π
ea/8−ca,s22s/a−1

√
1

sα(1− α)a
[α(1− α)]s/a−1/2.

Here ca,s =
1

12

∫ ∞
0

a2

(at+ s)2
(t− btc) dt.

For s = 1, a = 1 (reverse Euler), fa,s(α) ≡ 1 .
For s = 1, a = 2,

fa,s(α) =
1

π
√
α (1− α)

.

Similarly for d loops.
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Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Stationary processes

I (X,B, µ, T ) ergodic measure-preserving system (usually invertible)

I α = {a1, . . . , ar} finite measurable partition

I The process (X,B, µ, T, α) corresponds to a shift-invariant measure
(also call it µ) on Ω = αZ.

I The time-0 partition of Ω is a generator for the m.p. system
(Ω, µ, σ).
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Connection of Adics with Tail Fields of Stationary Processes

Ordinary tail field

Tail fields

I The future tail field is T + =
⋂
n≥0 B(ωn, ωn+1, . . . ).

I In X, T +(α) =
⋂
n≥0 B(T−nα ∨ T−n−1α ∨ . . . ).

I It is the intersection of the algebras generated by all the cylinder sets
{Tnx ∈ ain , . . . , Tn+jx ∈ ain+j : n, j ≥ 0}.

I When α is a generator, T +(α) is the Pinsker algebra of (X,B, µ, T ).
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Ordinary tail field

The K property

I A system (X,B, µ, T ) is K (has the Kolmogorov property) if there is
a generator α such that T +(α) is trivial, i.e. consists only of sets of
measure 0 or 1.

I We also define T −(α) =
⋂
n≥0 B(Tnα ∨ Tn+1α ∨ . . . ) ,

T ±(α) =
⋂
n≥0 B{xi : |i| ≥ n}.

I Rohlin-Sinai, 1961: (X,B, µ, T ) is K if and only if it has
completely positive entropy, i.e. every nontrivial factor has positive
entropy.

I Therefore, for any partition α, T −(α) is trivial if and only if T +(α)
is trivial (because for any β ≤ α, hµ(T, β) = hµ(T−1, β)).
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Ordinary tail field

Changing generators

I Ornstein-Weiss, 1975: Given a partition α, there is a refinement
β ≥ α such that T ±(β) = B.

I Thus even if the process (α, T ) is K, so that no information about
the present remains in either the remote future or in the remote past,

I it can be recoded to an isomorphic process that is 2-sided
deterministic: if the remote past and remote future can
communicate and cooperate, they can determine what is going on
near the present.

I ———-]———–[——-0——-]———–[———-
known ??????? known
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Fine tail fields

Fine tail fields

I The ordinary tail fields are the fields of saturated sets for the Borel
equivalence relation under finite coordinate changes.

I Now consider some finer tail fields that allow for saving a limited
amount of information as the present recedes into the distance.

I G= a group, probably Zr. Assume discrete, countable, maybe
abelian.

I ψ : Ω→ G, a Borel map (or continuous, or even a one-block map),
also considered as a map on X

I ψnm(x) = ψ(Tmx) · · ·ψ(Tnx), in abelian case
n∑

k=m

ψ(T kx)
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Fine tail fields 2

I E.g., if ψ : Ω→ Zd is defined by ψ(ω) = ei ∈ Zd if ω0 = ai, then
ψn−10 (ω) gives in each entry i the number of times that ai appears
in the first n entries in ω: this ψ is the symbol-counting cocycle.

I F+
ψ (α)=

⋂
n≥0 B(ψn0 , ψ

n+1
0 , . . . )

I F−ψ (α)=
⋂
n≥0 B(ψ0

−n, ψ
0
−n−1, . . . )

I F±ψ (α)=
⋂
n≥0 B{ψ

j
−j : j ≥ 0}
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Fine tail fields

Equivalence relations

I These finer sigma-algebras are also the saturated sets of
corresponding Borel equivalence relations

I ω ∼ ω′ if and only if ω, ω′ differ in only finitely many coordinates
and

∑∞
0 or −∞[ψ(σkω)− ψ(σkω′)] = 0.

I When ψ is the symbol-counting cocycle, these equivalence relations
are the orbit relation of the group of finite coordinate permutations.
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Relations among fields

I Note that F+
ψ (α)⊃ T +and F−ψ (α)⊃ T −.

I Also, T ±⊃ T +, T −

I but sometimes T ± 6= T +∩ T −

I and sometimes F±ψ (α)+ F+
ψ (α), F−ψ (α).
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Super-K

I We say that a process (α, T ) is super-K+ if F+
ψ (α) is trivial, with ψ

the symbol-counting cocycle.

I Super-K− and super-K± are defined similarly.

I For example, Bernoulli processes are super-K+, super-K−, and
super-K± (Hewitt-Savage, 1988).

I There are also such results for the 2-sided case by
Blackwell-Freedman for Markov processes, Georgii for Gibbs states,
Berbee-den Hollander for integer-valued processes, and others.
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Super-K

Dependence on the partition

I But we don’t know, for example, whether F+
ψ (α) trivial implies

F−ψ (α) trivial.

I And unlike the K property, super-K depends on the choice of
generating partition.

I We can have F+
ψ (α) trivial and find a refinement β ≥ α with

F+
ψ (β) nontrivial (in fact equal to B).
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Super-K

Triviality of two-sided fine tails

I K. Schmidt-KP, 1997: Let µ be a shift-invariant Gibbs measure
with summable-variation potential on a mixing SFT ΣM ;

I ψ : ΣM → G a continuous function into a countable discrete group
with finite conjugacy classes.

I Then F±ψ (α) is trivial—i.e., µ is ergodic with respect to the

equivalence relation defined by ψ: (Ω, µ, σ) is super-K±.

I K. Schmidt, 1999: If (X,B, µ, T )is ergodic and ψ : X → G (as
above) is Borel, then F±ψ (α)=T ±.

I Interpretation: History is useless and science is impossible.

I Corollary: Any process (could be countable-state) with 2-sided
trivial tail field T ± is super-K±: F±ψ (α) is trivial.



Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Super-K

Triviality of two-sided fine tails

I K. Schmidt-KP, 1997: Let µ be a shift-invariant Gibbs measure
with summable-variation potential on a mixing SFT ΣM ;

I ψ : ΣM → G a continuous function into a countable discrete group
with finite conjugacy classes.

I Then F±ψ (α) is trivial—i.e., µ is ergodic with respect to the

equivalence relation defined by ψ: (Ω, µ, σ) is super-K±.

I K. Schmidt, 1999: If (X,B, µ, T )is ergodic and ψ : X → G (as
above) is Borel, then F±ψ (α)=T ±.

I Interpretation: History is useless and science is impossible.

I Corollary: Any process (could be countable-state) with 2-sided
trivial tail field T ± is super-K±: F±ψ (α) is trivial.



Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Super-K

Triviality of two-sided fine tails

I K. Schmidt-KP, 1997: Let µ be a shift-invariant Gibbs measure
with summable-variation potential on a mixing SFT ΣM ;

I ψ : ΣM → G a continuous function into a countable discrete group
with finite conjugacy classes.

I Then F±ψ (α) is trivial—i.e., µ is ergodic with respect to the

equivalence relation defined by ψ: (Ω, µ, σ) is super-K±.

I K. Schmidt, 1999: If (X,B, µ, T )is ergodic and ψ : X → G (as
above) is Borel, then F±ψ (α)=T ±.

I Interpretation: History is useless and science is impossible.

I Corollary: Any process (could be countable-state) with 2-sided
trivial tail field T ± is super-K±: F±ψ (α) is trivial.



Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Super-K

Triviality of two-sided fine tails

I K. Schmidt-KP, 1997: Let µ be a shift-invariant Gibbs measure
with summable-variation potential on a mixing SFT ΣM ;

I ψ : ΣM → G a continuous function into a countable discrete group
with finite conjugacy classes.

I Then F±ψ (α) is trivial—i.e., µ is ergodic with respect to the

equivalence relation defined by ψ: (Ω, µ, σ) is super-K±.

I K. Schmidt, 1999: If (X,B, µ, T )is ergodic and ψ : X → G (as
above) is Borel, then F±ψ (α)=T ±.

I Interpretation: History is useless and science is impossible.

I Corollary: Any process (could be countable-state) with 2-sided
trivial tail field T ± is super-K±: F±ψ (α) is trivial.



Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Super-K

Triviality of two-sided fine tails

I K. Schmidt-KP, 1997: Let µ be a shift-invariant Gibbs measure
with summable-variation potential on a mixing SFT ΣM ;

I ψ : ΣM → G a continuous function into a countable discrete group
with finite conjugacy classes.

I Then F±ψ (α) is trivial—i.e., µ is ergodic with respect to the

equivalence relation defined by ψ: (Ω, µ, σ) is super-K±.

I K. Schmidt, 1999: If (X,B, µ, T )is ergodic and ψ : X → G (as
above) is Borel, then F±ψ (α)=T ±.

I Interpretation: History is useless and science is impossible.

I Corollary: Any process (could be countable-state) with 2-sided
trivial tail field T ± is super-K±: F±ψ (α) is trivial.



Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Super-K

Triviality of two-sided fine tails

I K. Schmidt-KP, 1997: Let µ be a shift-invariant Gibbs measure
with summable-variation potential on a mixing SFT ΣM ;

I ψ : ΣM → G a continuous function into a countable discrete group
with finite conjugacy classes.

I Then F±ψ (α) is trivial—i.e., µ is ergodic with respect to the

equivalence relation defined by ψ: (Ω, µ, σ) is super-K±.

I K. Schmidt, 1999: If (X,B, µ, T )is ergodic and ψ : X → G (as
above) is Borel, then F±ψ (α)=T ±.

I Interpretation: History is useless and science is impossible.

I Corollary: Any process (could be countable-state) with 2-sided
trivial tail field T ± is super-K±: F±ψ (α) is trivial.



Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Super-K plus generators

Super-K+ generators

I JPT-KP, 2004: If an ergodic system (X,B, µ, T ), with generator
α, is isomorphic to the direct product of a positive-entropy Bernoulli
system (B, σ) and some other system (Y, S), then there is a
generator β for (X,B, µ, T ) such that F+(β) = T +(β) =T +.

I Consequently, every K process with a direct Bernoulli factor has a
super-K+ generator (since then T +, the Pinsker algebra, is trivial).

I The idea of the proof is to construct a generating partition β with
F+(β) ⊂ T +(β), so that no new information is provided by
counting β-symbols.



Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Super-K plus generators

Super-K+ generators

I JPT-KP, 2004: If an ergodic system (X,B, µ, T ), with generator
α, is isomorphic to the direct product of a positive-entropy Bernoulli
system (B, σ) and some other system (Y, S), then there is a
generator β for (X,B, µ, T ) such that F+(β) = T +(β) =T +.

I Consequently, every K process with a direct Bernoulli factor has a
super-K+ generator (since then T +, the Pinsker algebra, is trivial).

I The idea of the proof is to construct a generating partition β with
F+(β) ⊂ T +(β), so that no new information is provided by
counting β-symbols.
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Adic systems present tail fields

Odometers

I For the full shift on AN, the group Γ of finite coordinate changes has
the invariant sets equal to T +.

I The orbits are the same as those of the d-odometer.

I Similarly for a SFT ΣM : T + is the field of invariant sets for the
stationary adic.

I

0

0

0

0

0

1

1

1

1

1

0 1



Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Adic systems present tail fields

Odometers

I For the full shift on AN, the group Γ of finite coordinate changes has
the invariant sets equal to T +.

I The orbits are the same as those of the d-odometer.

I Similarly for a SFT ΣM : T + is the field of invariant sets for the
stationary adic.

I

0

0

0

0

0

1

1

1

1

1

0 1



Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Adic systems present tail fields

Odometers

I For the full shift on AN, the group Γ of finite coordinate changes has
the invariant sets equal to T +.

I The orbits are the same as those of the d-odometer.

I Similarly for a SFT ΣM : T + is the field of invariant sets for the
stationary adic.

I

0

0

0

0

0

1

1

1

1

1

0 1



Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Adic systems present tail fields

Odometers

I For the full shift on AN, the group Γ of finite coordinate changes has
the invariant sets equal to T +.

I The orbits are the same as those of the d-odometer.

I Similarly for a SFT ΣM : T + is the field of invariant sets for the
stationary adic.

I

0

0

0

0

0

1

1

1

1

1

0 1



Adic Systems and Symbolic Dynamics

Connection of Adics with Tail Fields of Stationary Processes

Adic systems present tail fields

Graphs for the fine tail fields

I For the fine tail fields F+
ψ (α), we form a graph whose vertices are

the possible values of ψn0 (x).

I Suppose the values taken by ψ (assume it’s a 1-block map) are the
members of the alphabet A = {a1, . . . , ar} ⊂ Zd (could be a
multiset).

I The vertices are 0 and all sn(x) =
∑n
k=1 ψ(xk),

I with x = (xk) ∈ AN giving the edge labels of a path in Zd:

I xk labels the edge from sk−1(x) to sk(x).
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Adic systems present tail fields

I The fine tail equivalence relation on AN has x ∼ y if there is N such
that sn(x) = sn(y) for all n ≥ N : the paths are cofinal—eventually
coincide.

I The equivalence classes are the orbits of any adic (Bratteli-Vershik)
transformation that is defined on most of AN once the incoming
edges to each vertex are given a total order.

I The invariant sets of each such adic transformation are F+
ψ (α).

I Thus these systems visually present the future fine tail fields—we
can see the corresponding equivalence relations.
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The Pascal walk
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The Delannoy graph
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Xavier Méla’s X3 walk
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Frick’s 2x+ 1 walk
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Frick’s 2x+ 1 system
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A walk with 4 vectors
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An isotropic adic system based on a walk with 4 vectors
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Ordering incoming edges to define the transformation
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The Delannoy System

Ergodic measures

Identifying the invariant measures depends on knowing the path counts
dim(v, w) = number of paths from v to w.

For Pascal,

(
n− n0
k − k0

)
.

For Delannoy, D(i, j) =

j∑
d=0

2d
(
i

d

)(
j

d

)
.



Adic Systems and Symbolic Dynamics

Other Walk-Generated Adics

The Delannoy System

Recurrence formula and generating function for Delannoy
numbers

I

D(n, 0) = D(0, n) = 1 for all n ≥ 0;

D(n, k) = 0 if either n or k < 0;

D(n, k) = D(n, k − 1) +D(n− 1, k − 1) +D(n− 1, k) for all n, k.

I ∑
n,k≥0

D(n, k)xnyk =
1

1− (x+ y + xy)
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The Delannoy System

Various formulas for Delannoy numbers

Assuming n ≥ k,

I

D(n, k) =

k∑
d=0

(
k

d

)(
n+ k − d

k

)
=

k∑
d=0

2d
(
n

d

)(
k

d

)
I

=

k∑
d=0

(
k

d

)(
n+ d

k

)
=

k∑
d=0

(
k

k − d

)(
n+ d

k

)
I

=

k∑
d=0

(
n+ k − d
k − d

)(
n

d

)
=

k∑
d=0

(
n+ d

d

)(
n

k − d

)
.
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The Delannoy System

Asymptotics of Delannoy numbers on the diagonal

D(n, n) ∼ (3 + 2
√

2)n(.57
√
n− .067n−3/2 + .006n−5/2 + . . . ).
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Invariant measures for the Delannoy adic

Theorem
The non-atomic ergodic (invariant probability) measures for the Delannoy
adic dynamical system are a one-parameter family {µα : α ∈ [0, 1]} given
by choosing nonnegative α, β, γ with α+β+ γ = 1 and βγ = α and then
putting weight β on each horizontal edge, weight γ on each vertical edge,
and weight α on each diagonal edge. (The measure of any cylinder set is
then determined by multiplying the weights on the edges that define it.)
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The Delannoy adic
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The Delannoy System

Ingredients of the proof

I Pemantle-Wilson asymptotics for the Delannoy numbers:

D(n, k) ∼

(√
n2 + k2 − k

n

)−n(√
n2 + k2 − n

k

)−k
×

√
1

2π

√
nk

(n+ k −
√
n2 + k2)2

√
n2 + k2

,

uniformly if n/k and k/n are bounded.

I Collision argument based on recurrence of symmetric random walk in
Z2

I X. Méla’s isotropy argument
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Total ergodicity

Total ergodicity of the Delannoy adics

Theorem
With respect to each of its ergodic (invariant probability) measures, the
Delannoy adic dynamical system is totally ergodic (i.e., has among its
eigenvalues no roots of unity besides 1).

Theorem
For p prime, r ≥ 0, and n = 0, 1, 2, . . . ,

D(n, pr − 1) ≡p (−1)(n mod pr).
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Total ergodicity

The Delannoy graph with a “blocking set”
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Some remarks and questions

Remarks on the Delannoy system

I The Delannoy system is essentially expansive: for each of its ergodic
measures, it is isomorphic to a subshift on {h, d, v}, given by
concatenating blocks at the vertices, with a shift-invariant measure.

I The subshift is topologically weakly mixing.

I With each ergodic measure, the Delannoy adic is loosely Bernoulli.

I We do not know about limit laws for return times, weak mixing,
multiplicity of the spectrum, or joinings.

I But there is some progress on the complexity (n3/24 for the
Delannoy, by Sarah Bailey Frick) and on generalizing these
considerations to a class of systems.
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Some remarks and questions

Criteria for expansiveness of adic systems

I We want to code the adic transformation (essentially faithfully) by
the first edge (or initial segment of a fixed length): expansiveness.

I It is faithful for the Pascal (Méla), Pascal-based (Frick), Delannoy,
and some others.

I We are trying to produce a general argument as well as describe the
fibers in cases where the coding is not faithful.

I We are still lacking useful criteria for expansiveness of adic systems.
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Some remarks and questions

Complexities of adic systems

I We want to calculate the complexity P (n) = number of n-blocks in
the coding, asymptotically.

I For the Pascal, p(n) ∼ n3/6 (Méla).

I For the Delannoy, P (n) ∼ n3/24 (Frick).

I Again general methods for estimating P (n) asymptotically are
needed.
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Some remarks and questions

Varying orders on Bratteli diagrams

I These properties depend on the choice of order of the incoming
edges.

I For a given adic system, what is the maximum complexity over all
possible orders?

I What is the expected complexity if the orders at the vertices are
chosen independently according to a fixed Bernoulli measure?

I It seems that for the Pascal, for every order P (n) is asymptotically
no more than n5/3 (and maybe for the union it’s still n3/6).

I Recall that Bezuglyi, Kwiatkowski, Yassawi have investigated the
probability that an order is “perfect”, i.e. admits the Vershik map as
a homeomorphism.

I They also showed that for a fixed finite rank diagram there is a
number J such that with probability 1 there are J maximal paths
and J minimal paths.
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Pascal dynamics

Here are a few results from the thesis of X. Méla.

I The subshift coming from coding by the first edge is topologically
weakly mixing: there are no nonconstant eigenfunctions with a
residual set of continuity points (Keynes-Robertson condition)

I Complexity: P (n) = # of words of length n ∼ n3/6
I There is a piecewise continuous limit law for entrance times to

cylinder sets.

I The Pascal with each of its ergodic measures is loosely Bernoulli (de
la Rue and Janvresse; Frick for the Euler).
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Some remarks and questions

Questions about the Pascal systems
I Is the system weakly mixing with respect to each of its ergodic

invariant measures?

I Conjecture: If k0 = 0 and kn+1 − kn ∈ {0, 1} for all n ≥ 0, and if
z ∈ C is such that zC(n,kn) → 1 as n→∞, then z = 1.

I Terry Adams-KP have partial results in this direction. For example,
they show that for each α there are a dense Gδ set of λ ∈ S1 and a
set of full µα measure of paths x such that λdn(x) ≈ 1 for many
n—so that λ is a candidate eigenvalue—but {λdn(x)} is dense in S1.

I And a couple of their questions have been answered by Behrend,
Boshernitzan, and Kolesnik:

I (1) {λdn(x)} is uniformly distributed in S1 for every λ not a root of
unity if and only if x is eventually diagonal.

I (2) There is no λ such that {λdn(x)} is uniformly distributed in S1

for every x except the two edge paths.

I Possible new avenues toward proving weak mixing of the Pascal are
being explored by A. Prikhodko and A. Vershik.



Adic Systems and Symbolic Dynamics

Other Walk-Generated Adics

Some remarks and questions

Questions about the Pascal systems
I Is the system weakly mixing with respect to each of its ergodic

invariant measures?

I Conjecture: If k0 = 0 and kn+1 − kn ∈ {0, 1} for all n ≥ 0, and if
z ∈ C is such that zC(n,kn) → 1 as n→∞, then z = 1.

I Terry Adams-KP have partial results in this direction. For example,
they show that for each α there are a dense Gδ set of λ ∈ S1 and a
set of full µα measure of paths x such that λdn(x) ≈ 1 for many
n—so that λ is a candidate eigenvalue—but {λdn(x)} is dense in S1.

I And a couple of their questions have been answered by Behrend,
Boshernitzan, and Kolesnik:

I (1) {λdn(x)} is uniformly distributed in S1 for every λ not a root of
unity if and only if x is eventually diagonal.

I (2) There is no λ such that {λdn(x)} is uniformly distributed in S1

for every x except the two edge paths.

I Possible new avenues toward proving weak mixing of the Pascal are
being explored by A. Prikhodko and A. Vershik.



Adic Systems and Symbolic Dynamics

Other Walk-Generated Adics

Some remarks and questions

Questions about the Pascal systems
I Is the system weakly mixing with respect to each of its ergodic

invariant measures?

I Conjecture: If k0 = 0 and kn+1 − kn ∈ {0, 1} for all n ≥ 0, and if
z ∈ C is such that zC(n,kn) → 1 as n→∞, then z = 1.

I Terry Adams-KP have partial results in this direction. For example,
they show that for each α there are a dense Gδ set of λ ∈ S1 and a
set of full µα measure of paths x such that λdn(x) ≈ 1 for many
n—so that λ is a candidate eigenvalue—but {λdn(x)} is dense in S1.

I And a couple of their questions have been answered by Behrend,
Boshernitzan, and Kolesnik:

I (1) {λdn(x)} is uniformly distributed in S1 for every λ not a root of
unity if and only if x is eventually diagonal.

I (2) There is no λ such that {λdn(x)} is uniformly distributed in S1

for every x except the two edge paths.

I Possible new avenues toward proving weak mixing of the Pascal are
being explored by A. Prikhodko and A. Vershik.



Adic Systems and Symbolic Dynamics

Other Walk-Generated Adics

Some remarks and questions

Questions about the Pascal systems
I Is the system weakly mixing with respect to each of its ergodic

invariant measures?

I Conjecture: If k0 = 0 and kn+1 − kn ∈ {0, 1} for all n ≥ 0, and if
z ∈ C is such that zC(n,kn) → 1 as n→∞, then z = 1.

I Terry Adams-KP have partial results in this direction. For example,
they show that for each α there are a dense Gδ set of λ ∈ S1 and a
set of full µα measure of paths x such that λdn(x) ≈ 1 for many
n—so that λ is a candidate eigenvalue—but {λdn(x)} is dense in S1.

I And a couple of their questions have been answered by Behrend,
Boshernitzan, and Kolesnik:

I (1) {λdn(x)} is uniformly distributed in S1 for every λ not a root of
unity if and only if x is eventually diagonal.

I (2) There is no λ such that {λdn(x)} is uniformly distributed in S1

for every x except the two edge paths.

I Possible new avenues toward proving weak mixing of the Pascal are
being explored by A. Prikhodko and A. Vershik.



Adic Systems and Symbolic Dynamics

Other Walk-Generated Adics

Some remarks and questions

Questions about the Pascal systems
I Is the system weakly mixing with respect to each of its ergodic

invariant measures?

I Conjecture: If k0 = 0 and kn+1 − kn ∈ {0, 1} for all n ≥ 0, and if
z ∈ C is such that zC(n,kn) → 1 as n→∞, then z = 1.

I Terry Adams-KP have partial results in this direction. For example,
they show that for each α there are a dense Gδ set of λ ∈ S1 and a
set of full µα measure of paths x such that λdn(x) ≈ 1 for many
n—so that λ is a candidate eigenvalue—but {λdn(x)} is dense in S1.

I And a couple of their questions have been answered by Behrend,
Boshernitzan, and Kolesnik:

I (1) {λdn(x)} is uniformly distributed in S1 for every λ not a root of
unity if and only if x is eventually diagonal.

I (2) There is no λ such that {λdn(x)} is uniformly distributed in S1

for every x except the two edge paths.

I Possible new avenues toward proving weak mixing of the Pascal are
being explored by A. Prikhodko and A. Vershik.



Adic Systems and Symbolic Dynamics

Other Walk-Generated Adics

Some remarks and questions

Questions about the Pascal systems
I Is the system weakly mixing with respect to each of its ergodic

invariant measures?

I Conjecture: If k0 = 0 and kn+1 − kn ∈ {0, 1} for all n ≥ 0, and if
z ∈ C is such that zC(n,kn) → 1 as n→∞, then z = 1.

I Terry Adams-KP have partial results in this direction. For example,
they show that for each α there are a dense Gδ set of λ ∈ S1 and a
set of full µα measure of paths x such that λdn(x) ≈ 1 for many
n—so that λ is a candidate eigenvalue—but {λdn(x)} is dense in S1.

I And a couple of their questions have been answered by Behrend,
Boshernitzan, and Kolesnik:

I (1) {λdn(x)} is uniformly distributed in S1 for every λ not a root of
unity if and only if x is eventually diagonal.

I (2) There is no λ such that {λdn(x)} is uniformly distributed in S1

for every x except the two edge paths.

I Possible new avenues toward proving weak mixing of the Pascal are
being explored by A. Prikhodko and A. Vershik.



Adic Systems and Symbolic Dynamics

Other Walk-Generated Adics

Some remarks and questions

Questions about the Pascal systems
I Is the system weakly mixing with respect to each of its ergodic

invariant measures?

I Conjecture: If k0 = 0 and kn+1 − kn ∈ {0, 1} for all n ≥ 0, and if
z ∈ C is such that zC(n,kn) → 1 as n→∞, then z = 1.

I Terry Adams-KP have partial results in this direction. For example,
they show that for each α there are a dense Gδ set of λ ∈ S1 and a
set of full µα measure of paths x such that λdn(x) ≈ 1 for many
n—so that λ is a candidate eigenvalue—but {λdn(x)} is dense in S1.

I And a couple of their questions have been answered by Behrend,
Boshernitzan, and Kolesnik:

I (1) {λdn(x)} is uniformly distributed in S1 for every λ not a root of
unity if and only if x is eventually diagonal.

I (2) There is no λ such that {λdn(x)} is uniformly distributed in S1

for every x except the two edge paths.

I Possible new avenues toward proving weak mixing of the Pascal are
being explored by A. Prikhodko and A. Vershik.



Adic Systems and Symbolic Dynamics

Other Walk-Generated Adics

Some remarks and questions

Rank
I Is the system not of local rank 1 (hence infinite rank) for each µα?

I Local rank 1 would imply that there is a > 0 such that there are
infinitely many m for which there is an m-block B such that

µα(dm-δ-ball around B) > (a− δ)/m.

I Maybe there is δ > 0 such that for large n and k/n ≈ α, the dm-ball
around the block B(n, k) consists only of B(n, k).

I Maybe

C(n, kn)µα{x : d(x
C(n,kn)
1 , Bn,kn) < δ} → 0 as

kn
n
→ α?

I Is the maximal spectral type singular? What are the joinings of µα
and µβ?

I Is the joint action of the Pascal and shift on {0, 1}Z effective (every
nonidentity group element moves something)?

I The joint action of the shift and 2-odometer is that of the step-2
Baumslag-Solitor group: the only relation is σT = T 2σ.
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Sturmian Systems

Sturmian sequences

Minimal complexity

I Coven and Hedlund (1973, Math. Systems Theory): Every
nonperiodic sequence of minimal complexity—P (n) = n+ 1 for all
n—must be Sturmian.

I Since P (n) = number of n-blocks is nondecreasing, P (n) is
bounded iff the sequence is eventually periodic.

I Equivalently, eventually periodic is equivalent to existence of an n
for which P (n+ 1) = P (n).

I Of course for typical (random) sequences, P (n) tends to grow as hn

for some h > 0.

I We consider some recent developments regarding periodic and
nonperiodic “Sturmian” sequences, involving lexicographic order,
Farey diagrams, and adic transfomations.
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Sturmian sequences

Characterizations of nonperiodic Sturmian sequences

I Minimal complexity: P (n) = n+ 1 for all n.

I Balanced: For any two blocks u, v of the same length,
||u|1 − |v|1| ≤ 1.

I Codings of irrational rotations: There are x and irrational θ such
that for all n, ω(n) = 1[1−θ,1)(x+ nθ) or for all n,
ω(n) = 1(1−θ,1](x+ nθ).

I Staircase coding: There are x and irrational θ such that for all n,
ω(n) = bx+ (n+ 1)θc − bx+ nθc or for all n,
ω(n) = dx+ (n+ 1)θe − dx+ nθe. (Look at jumps between lattice
points above or below line through origin of slope θ. Get jump (of
floor) when nθ is in [1− θ, 1).)
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Sturmian sequences

Lower staircase coding of 3/7

0 0 1 0 1 0 1

0
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Farey diagram

Farey or Stern-Brocot Diagram
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Sturmian Systems

Farey diagram

Properties of Farey diagram

I Generated by adding numerators and denominators.

I Every rational in [0, 1] appears, generated exactly once,
automatically in lowest terms.

I Two Farey neighbors, p/q and p′/q′, satisfy p′q − q′p = ±1.

I Infinite paths give best one-sided approximations to irrationals.
When switch sides, have best two-sided approximations, the ordinary
continued fractions.
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Farey diagram

Ordinary and intermediate continued fractions

I Let B =

(
0 1
1 1

)
, A =

(
1 1
0 1

)
.

I Ordinary continued fractions for x = [a1, a2, . . . ]:(
pn−1 pn
qn−1 qn

)
=

(
1 0
0 1

)(
0 1
1 a1

)
. . .

(
0 1
1 an

)
I

= BAa1−1BAa2−1 . . . B Aan−1

I The intermediate products give the intermediate, Farey,
approximations.

I

x = [2, 3, 2, 4, . . . ] ≈ 1,
1

2
,

1

3
,

2

5
,

3

7
,

4

9
,

7

16
,

10

23
,

17

39
,

24

55
,

31

71
, . . .

I I learned about the Farey shift from papers of Jeff Lagarias.
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Farey Diagram of Blocks

0 1

0 01 1

0 001 01 011 1

0 0001 001 00101 01 01011 011 0111 1

0 00001 0001 0001001 001 00100101 00101 0010101 01 0101011 01011 01011011 011 0110111 0111 01111 1
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Farey diagram

Balanced periodic sequences

I The word at position corresponding to fraction p/(p+ q) has p 1’s
and q 0’s (hence length p+ q).

I The periodic sequence formed by each of these words is balanced.

I These words are Lyndon words—primitive and lexicogaphically
minimal among their rotations.

I They also increase lexicographically left to right in each row.

I Every balanced word of length p+ q with exactly p 1’s is a rotation
of the word in the Farey diagram that corresponds to p/(p+ q).
There are exactly p+ q of them.

I Infinite nonperiodic Sturmian sequences are found as “ends” of
infinite paths in the Farey diagram.
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Farey diagram

Times 2 map

I Viewed as dyadic expansions, the words in the Farey diagram
correspond to periodic orbits under the map Tz = z2 on the circle.
Each orbit is contained in a closed semicircle, and T preserves the
cyclic order on the circle.

I The invariant measures coming from Sturmian minimal sets minimize
the integrals of strictly convex functions (over all T -invariant
measures with a fixed frequency of 1’s) (Jenkinson 2007).

I Besides Coven-Hedlund (1973) and Hedlund-Morse (1940), we
should also mention Jenkinson-Zamboni (2004), Arnoux (2002—in
Pytheas Fogg), Berstel-Séébold (2002—in Lothaire), Jenkinson
(1996–), Bullett-Sentenac (1994), Borel-Laubie (1993), Rauzy
(1985), Gambaudo-Lanford-Tresser (1984), Hedlund (1944),
Christoffel (1875), J. Bernoulli (1772), and probably others.
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Farey diagram

Why does the concatenation work?

I Prop: If u < v are Lyndon words, then uv is Lyndon.

I The following are equivalent:

I Two integer vectors (q, p) and (q′, p′) span the integer lattice Z2.
I pq′ − qp′ = ±1.
I The parallelogram spanned by the vectors (q, p) and (q′, p′) has no

point of the integer lattice Z2 in its interior.
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(7,3) is Farey child of (5,2) and (2,1)

0 1 0 1 0 1 0

(2,1)
(5,2)

(7,3)

0? 1?
0 0 1 0 1
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Adics in the Farey diagram and ideals in the algebra

Subadics of the Farey diagram

I Regard the Farey diagram as a Bratteli-Vershik diagram, with the
adic transformation on the metric space of infinite paths.

I For rational rotation number θ (the frequency of 1’s), there are 3
topologically transitive subadics, each containing a unique minimal
set, isomorphic to a translation on a finite cyclic group.

I For irrational rotation number θ, there is a single minimal subadic,
isomorphic to the Sturmian system with that rotation number.

I These closed invariant subsets correspond to primitive ideals of the
approximately finite C∗ algebra determined by the Farey Bratteli
diagram.

I These observations were stimulated by a talk by O. Jenkinson, are
based on papers by O. Bratteli and F. Boca, and were developed in
conversations with T. de la Rue and E. Janvresse.
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Adics in the Farey diagram and ideals in the algebra

Ideals in AF algebras

I An AF algebra A is the closure of the increasing union of
finite-dimensional algebras An, each the direct sum of the matrix
algebras at level n of the Bratteli diagram.

I The edges of the diagram indicate embeddings of lower-dimensional
matrix algebras in higher-dimensional ones.

I A (two-sided norm-closed) ideal in A is determined by a subdiagram
Λ with the following two properties:

I Closed under successors: If (n, i) ∈ Λ and (n, i)↘ (n+ 1, j),
then (n+ 1, j) ∈ Λ;

I Closed under ancestors: If (n+ 1, j) ∈ Λ for all j such that
(n, i)↘ (n+ 1, j), then (n, i) ∈ Λ.



Adic Systems and Symbolic Dynamics

Sturmian Systems

Adics in the Farey diagram and ideals in the algebra

Ideals in AF algebras

I An AF algebra A is the closure of the increasing union of
finite-dimensional algebras An, each the direct sum of the matrix
algebras at level n of the Bratteli diagram.

I The edges of the diagram indicate embeddings of lower-dimensional
matrix algebras in higher-dimensional ones.

I A (two-sided norm-closed) ideal in A is determined by a subdiagram
Λ with the following two properties:

I Closed under successors: If (n, i) ∈ Λ and (n, i)↘ (n+ 1, j),
then (n+ 1, j) ∈ Λ;

I Closed under ancestors: If (n+ 1, j) ∈ Λ for all j such that
(n, i)↘ (n+ 1, j), then (n, i) ∈ Λ.



Adic Systems and Symbolic Dynamics

Sturmian Systems

Adics in the Farey diagram and ideals in the algebra

Ideals in AF algebras

I An AF algebra A is the closure of the increasing union of
finite-dimensional algebras An, each the direct sum of the matrix
algebras at level n of the Bratteli diagram.

I The edges of the diagram indicate embeddings of lower-dimensional
matrix algebras in higher-dimensional ones.

I A (two-sided norm-closed) ideal in A is determined by a subdiagram
Λ with the following two properties:

I Closed under successors: If (n, i) ∈ Λ and (n, i)↘ (n+ 1, j),
then (n+ 1, j) ∈ Λ;

I Closed under ancestors: If (n+ 1, j) ∈ Λ for all j such that
(n, i)↘ (n+ 1, j), then (n, i) ∈ Λ.



Adic Systems and Symbolic Dynamics

Sturmian Systems

Adics in the Farey diagram and ideals in the algebra

Ideals in AF algebras

I An AF algebra A is the closure of the increasing union of
finite-dimensional algebras An, each the direct sum of the matrix
algebras at level n of the Bratteli diagram.

I The edges of the diagram indicate embeddings of lower-dimensional
matrix algebras in higher-dimensional ones.

I A (two-sided norm-closed) ideal in A is determined by a subdiagram
Λ with the following two properties:

I Closed under successors: If (n, i) ∈ Λ and (n, i)↘ (n+ 1, j),
then (n+ 1, j) ∈ Λ;

I Closed under ancestors: If (n+ 1, j) ∈ Λ for all j such that
(n, i)↘ (n+ 1, j), then (n, i) ∈ Λ.



Adic Systems and Symbolic Dynamics

Sturmian Systems

Adics in the Farey diagram and ideals in the algebra

Ideals in AF algebras

I An AF algebra A is the closure of the increasing union of
finite-dimensional algebras An, each the direct sum of the matrix
algebras at level n of the Bratteli diagram.

I The edges of the diagram indicate embeddings of lower-dimensional
matrix algebras in higher-dimensional ones.

I A (two-sided norm-closed) ideal in A is determined by a subdiagram
Λ with the following two properties:

I Closed under successors: If (n, i) ∈ Λ and (n, i)↘ (n+ 1, j),
then (n+ 1, j) ∈ Λ;

I Closed under ancestors: If (n+ 1, j) ∈ Λ for all j such that
(n, i)↘ (n+ 1, j), then (n, i) ∈ Λ.



Adic Systems and Symbolic Dynamics

Sturmian Systems

Adics in the Farey diagram and ideals in the algebra

Ideal conditions

(n, i)

##
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Adics in the Farey diagram and ideals in the algebra

Primitive ideals in A

A (two-sided norm-closed) ideal I ⊂ A is primitive if and only if there are
not ideals I1, I2 in A, both different from I, such that I = I1 ∩ I2.
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Primitive ideals in A

A (two-sided norm-closed) ideal I ⊂ A is primitive if and only if there are
not ideals I1, I2 in A, both different from I, such that I = I1 ∩ I2.

In terms of the diagram Λ determining I, this means that if
(n, i), (m, j) /∈ Λ, then there are p ≥ n,m and (p, k) /∈ Λ such that
(n, i)↘ (p, k) and (m, j)↘ (p, k).
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Adics in the Farey diagram and ideals in the algebra

Ideals and invariant sets

I Ideals of an AF algebra correspond to closed invariant sets of the
Bratteli-Vershik transformation on the path space of the diagram.

I Primitive ideals of an AF algebra correspond to topologically
transitive closed invariant sets of the Bratteli-Vershik transformation
on the path space of the diagram.
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The orbit of 1/3 ∼ 001001001001 . . .
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Mapping 1/3 ∼ 001001001001 . . .
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An orbit forward asymptotic to that of 1/3
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An orbit forward asymptotic to that of 1/3

·

0
1

1
1

0
1

1
2

1
1

0
1

1
3

1
2

2
3

1
1

0
1

1
4

1
3

2
5

1
2

3
5

2
3

3
4

1
1

0
1

1
5

1
4

2
7

1
3

3
8

2
5

3
7

1
2

4
7

3
5

5
8

2
3

5
7

3
4

4
5

1
1

0
1

1
6

1
5

2
9

1
4

3
11

2
7

3
10

1
3

4
11

3
8

5
13

2
5

5
12

3
7

4
9

1
2

5
9

4
7

7
12

3
5

8
13

5
8

7
11

2
3

7
10

5
7

8
11

3
4

7
9

4
5

5
6

1
1



Adic Systems and Symbolic Dynamics

Sturmian Systems

Adics in the Farey diagram and ideals in the algebra

An orbit forward asymptotic to that of 1/3

·

0
1

1
1

0
1

1
2

1
1

0
1

1
3

1
2

2
3

1
1

0
1

1
4

1
3

2
5

1
2

3
5

2
3

3
4

1
1

0
1

1
5

1
4

2
7

1
3

3
8

2
5

3
7

1
2

4
7

3
5

5
8

2
3

5
7

3
4

4
5

1
1

0
1

1
6

1
5

2
9

1
4

3
11

2
7

3
10

1
3

4
11

3
8

5
13

2
5

5
12

3
7

4
9

1
2

5
9

4
7

7
12

3
5

8
13

5
8

7
11

2
3

7
10

5
7

8
11

3
4

7
9

4
5

5
6

1
1



Adic Systems and Symbolic Dynamics

Sturmian Systems

Adics in the Farey diagram and ideals in the algebra

An orbit forward asymptotic to that of 1/3

·

0
1

1
1

0
1

1
2

1
1

0
1

1
3

1
2

2
3

1
1

0
1

1
4

1
3

2
5

1
2

3
5

2
3

3
4

1
1

0
1

1
5

1
4

2
7

1
3

3
8

2
5

3
7

1
2

4
7

3
5

5
8

2
3

5
7

3
4

4
5

1
1

0
1

1
6

1
5

2
9

1
4

3
11

2
7

3
10

1
3

4
11

3
8

5
13

2
5

5
12

3
7

4
9

1
2

5
9

4
7

7
12

3
5

8
13

5
8

7
11

2
3

7
10

5
7

8
11

3
4

7
9

4
5

5
6

1
1



Adic Systems and Symbolic Dynamics

Sturmian Systems

Adics in the Farey diagram and ideals in the algebra

The diagram (non-red) of one ideal for 1/3 ∼ 001
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Adics in the Farey diagram and ideals in the algebra

The diagram (non-red) of another ideal for 1/3 ∼ 001
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Adics in the Farey diagram and ideals in the algebra

Ideal and orbit closure for θ = [2, 3, 2, 4, . . . ]
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Adics in the Farey diagram and ideals in the algebra

I P. Dartnell, F. Durand, and A. Maass (Studia Math.2000) computed
the dimension groups of Sturmian subshifts and showed that two
Sturmian subshifts are orbit equivalent if and only if they are
topologically conjugate.

I What further insight into the much-studied class of Sturmian
subshifts might be gained from the adic viewpoint?
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Relation with β-shifts

β-shifts

I Fix β > 1, let d = dβe, and D = {0, 1, . . . , d− 1}.
I Let Σ+

β ⊂ DN denote the closure of the set of all greedy expansions
base β of all x ∈ [0, 1],

x =
a1
β

+
a2
β2

+ . . .

I (Σ+
β , σ) is a symbolic coding (lift) of the β-transformation

Tβ : [0, 1]→ [0, 1] defined by Tβx = βx mod 1.

I If the expansion a1a2 . . . of 1 base β is nonterminating, we put
eβ(1) = a1a2 . . . .

I Otherwise there is a first i for which T iβ1 = n ∈ N, and then we put
eβ(1) = [a1 . . . ai−1(n− 1)]∞.
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Relation with β-shifts

β-shifts and lexicographic order

I A sequence a = a1a2 · · · ∈ DN is in Σ+
β if and only if σkx ≤ eβ(1)

for all k ≥ 0.

I A sequence a = a1a2 · · · ∈ DN is eβ(1) for some β if and only if it
dominates all its shifts: a ≥ σka for all k ≥ 0 (Parry, 1960).
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Relation with β-shifts

A map of the interval

I Return now to a Sturmian symbolic dynamical system with rotation
number θ. It also has a lexicographically maximal element.

I This maximal element, M(θ) = (1[0,θ)(n(1− θ))), is obtained from
the Farey diagram of blocks by switching 0’s and 1’s (and θ with
1− θ).

I Since M(θ) is lexicographically maximal in a subshift, it dominates
all its shifts and hence is the expansion eβ(1) of 1 base β for some
β = β(θ) ∈ (1, 2).

I We define L : (0, 1]→ (0, 1] by L(θ) = β(θ)− 1.
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Relation with β-shifts

The map L

I The map L : (0, 1]→ (0, 1] is strictly increasing.

I This is because β → eβ(1) is strictly increasing and each row of the
Farey diagram of blocks is strictly increasing.

I Then we switch 0’s and 1’s, and θ and 1− θ.

I For θ = 1/3, the minimal element is 001001001 . . . , the maximal
element is M(θ) = 100100100 · · · = (1[0,1/3)(n× 2/3)), and β(θ) is
the reciprocal of the solution of 1 = x+ x4 + x7 + . . . , i.e.
1 = x+ x3.

I For θ = 2/3, the minimal element is 011011011 . . . , the maximal
element is M(θ) = 110110110 · · · = (1[0,2/3)(n× 1/3)), and β(θ) is
the reciprocal of the solution of 1 = (x+ x2)(1 + x3 + . . . ), i.e.
1 = x+ x2 + x3.

I So β(1/3) < β(2/3)
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Relation with β-shifts

Some values of L

I L(1/2) is the solution α of x+ x2 = 1.

I L(Q) ⊂ algebraic numbers.

I M(α) = 1f , where f is the fixed point of the Fibonacci substitution
0→ 01, 1→ 0.

I The 1999 thesis of Kimberly Johnson gives (among other things) an
algorithm for finding the maximal elements in substitution subshifts.

I L(α) is transcendental (Chi and Kwon, 2004).

I Since the mapping L connects the lexicographic order properties of
Sturmian systems and β-shifts (and the interval), it may be
interesting to develop further its properties and those of the
dynamical system it defines.

I In recent papers and preprints, DoYong Kwon has defined and
studied essentially the same function.


