Adic Systems and Symbolic Dynamics

Karl Petersen
University of North Carolina at Chapel Hill

Pingree Park Workshop July 2014

Overview

- I will start with some (well-known) background on adic systems

Overview

- I will start with some (well-known) background on adic systems
- and propose a survey of joint work over several years with Xavier Méla, Sarah Bailey Frick, Mike Keane, Ibrahim Salama, Alexander Varchenko, Sandi Shields, et al.

Overview

- I will start with some (well-known) background on adic systems
- and propose a survey of joint work over several years with Xavier Méla, Sarah Bailey Frick, Mike Keane, Ibrahim Salama, Alexander Varchenko, Sandi Shields, et al.
- The focus will be on adic systems coming from random walks, symbol counts, and reinforcement.

Overview

- I will start with some (well-known) background on adic systems
- and propose a survey of joint work over several years with Xavier Méla, Sarah Bailey Frick, Mike Keane, Ibrahim Salama, Alexander Varchenko, Sandi Shields, et al.
- The focus will be on adic systems coming from random walks, symbol counts, and reinforcement.
- We will aslo take a look at connections with tail fields for stochastic processes and at an adic system that contains all Sturmian systems.

Overview

- I will start with some (well-known) background on adic systems
- and propose a survey of joint work over several years with Xavier Méla, Sarah Bailey Frick, Mike Keane, Ibrahim Salama, Alexander Varchenko, Sandi Shields, et al.
- The focus will be on adic systems coming from random walks, symbol counts, and reinforcement.
- We will aslo take a look at connections with tail fields for stochastic processes and at an adic system that contains all Sturmian systems.
- We will mention some open problems along the way.

Overview

- I will start with some (well-known) background on adic systems
- and propose a survey of joint work over several years with Xavier Méla, Sarah Bailey Frick, Mike Keane, Ibrahim Salama, Alexander Varchenko, Sandi Shields, et al.
- The focus will be on adic systems coming from random walks, symbol counts, and reinforcement.
- We will aslo take a look at connections with tail fields for stochastic processes and at an adic system that contains all Sturmian systems.
- We will mention some open problems along the way.
- Thanks to Xavier and Sarah for many of the pictures (as well as results).

Bratteli Diagrams

- We start with an infinite downward directed graph.

Bratteli Diagrams

- We start with an infinite downward directed graph.
- The vertices, denoted by (n, k), are partitioned into levels, V_{n}.

Bratteli Diagrams

- We start with an infinite downward directed graph.
- The vertices, denoted by (n, k), are partitioned into levels, V_{n}.
- Edges connect vertices in consecutive levels.

Bratteli Diagrams

- We start with an infinite downward directed graph.
- The vertices, denoted by (n, k), are partitioned into levels, V_{n}.
- Edges connect vertices in consecutive levels.
- Incidence matrices describe the numbers of edges connecting vertices on levels n and $n+1$.

$$
\begin{aligned}
A_{1} & =\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
A_{2} & =\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \\
A_{3} & =\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Bratteli Diagrams

- Infinite downward directed graphs
- Vertices, denoted by (n, k), are partitioned into levels, V_{n}
- Edges connect vertices in consecutive levels
- Incidence matrices describe the number of edges connecting levels n and $n+1$

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
& A_{2}=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \\
& A_{3}=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

The path space

- X is the space of infinite edge paths.

The path space

- X is the space of infinite edge paths.
- For $x=x_{0} x_{1} x_{2} \cdots \in X$ denote by x_{i} the i 'th edge of x which connects a vertex in level i to a vertex in level $i+1$.

The path space

- X is the space of infinite edge paths.
- For $x=x_{0} x_{1} x_{2} \cdots \in X$ denote by x_{i} the i 'th edge of x which connects a vertex in level i to a vertex in level $i+1$.
- X is a compact metric space with metric given by: For $x, y \in X, d(x, y)=2^{-i}$ where $i=\inf \left\{j \mid x_{j} \neq y_{j}\right\}$.

The path space

- X is the space of infinite edge paths.
- For $x=x_{0} x_{1} x_{2} \cdots \in X$ denote by x_{i} the i 'th edge of x which connects a vertex in level i to a vertex in level $i+1$.
- X is a compact metric space with metric given by: For $x, y \in X, d(x, y)=2^{-i}$ where $i=\inf \left\{j \mid x_{j} \neq y_{j}\right\}$.
- A cylinder set $C=\left[c_{0} c_{1} c_{2} \ldots c_{n}\right]$ is a clopen set such that $x \in C$ implies $x=c_{0} c_{1} \ldots c_{n} x_{n+1} \ldots$.

Edge Ordering

Level n

\square

The adic transformation

- Two paths are comparable if they are cofinal-agree from some level downward.

The adic transformation

- Two paths are comparable if they are cofinal-agree from some level downward.
- $x<y$ if at the last level where they differ, the edge of x precedes that of y.

The adic transformation

- Two paths are comparable if they are cofinal-agree from some level downward.
- $x<y$ if at the last level where they differ, the edge of x precedes that of y.
- $T x$ is defined to be the smallest $y>x$ if there is one.

The adic transformation

- Two paths are comparable if they are cofinal-agree from some level downward.
- $x<y$ if at the last level where they differ, the edge of x precedes that of y.
- $T x$ is defined to be the smallest $y>x$ if there is one.
- There can be maximal paths for which T is not defined, but often this set is at most countable and can be neglected when dealing with nonatomic measures.

The adic transformation

- Two paths are comparable if they are cofinal-agree from some level downward.
- $x<y$ if at the last level where they differ, the edge of x precedes that of y.
- $T x$ is defined to be the smallest $y>x$ if there is one.
- There can be maximal paths for which T is not defined, but often this set is at most countable and can be neglected when dealing with nonatomic measures.
- There can also be minimal paths.

The adic transformation

- Two paths are comparable if they are cofinal-agree from some level downward.
- $x<y$ if at the last level where they differ, the edge of x precedes that of y.
- $T x$ is defined to be the smallest $y>x$ if there is one.
- There can be maximal paths for which T is not defined, but often this set is at most countable and can be neglected when dealing with nonatomic measures.
- There can also be minimal paths.
- Sometimes (e.g. if there is only one of each), maximal paths can be mapped to minimal ones so as to produce a homeomorphism.

The adic transformation

- Two paths are comparable if they are cofinal-agree from some level downward.
- $x<y$ if at the last level where they differ, the edge of x precedes that of y.
- $T x$ is defined to be the smallest $y>x$ if there is one.
- There can be maximal paths for which T is not defined, but often this set is at most countable and can be neglected when dealing with nonatomic measures.
- There can also be minimal paths.
- Sometimes (e.g. if there is only one of each), maximal paths can be mapped to minimal ones so as to produce a homeomorphism.
- The survey by Durand (in Berthé-Rigo 2010) is highly recommended.

The adic transformation

- Tx $=$ smallest $y>x$ if there is one

The adic transformation

- Tx $=$ smallest $y>x$ if there is one

The adic transformation

- Tx $=$ smallest $y>x$ if there is one

The adic transformation

- Tx $=$ smallest $y>x$ if there is one

Adics and shifts

- The adic is transverse to the shift. In a self-similar tiling system, translation is like the adic, while changing scale within the hierarchy corresponds to the shift.

Adics and shifts

- The adic is transverse to the shift. In a self-similar tiling system, translation is like the adic, while changing scale within the hierarchy corresponds to the shift.
- The adic transformation is the successor map: it is like counting.

Adics and shifts

- The adic is transverse to the shift. In a self-similar tiling system, translation is like the adic, while changing scale within the hierarchy corresponds to the shift.
- The adic transformation is the successor map: it is like counting.
- The shift is like multiplication. In fact $\sigma x=2 x$ and $T x=x+1$ on two-sided binary sequences as coefficients of powers of 2 .

Adics and shifts

- The adic is transverse to the shift. In a self-similar tiling system, translation is like the adic, while changing scale within the hierarchy corresponds to the shift.
- The adic transformation is the successor map: it is like counting.
- The shift is like multiplication. In fact $\sigma x=2 x$ and $T x=x+1$ on two-sided binary sequences as coefficients of powers of 2 .
- The maps T and σ are transverse, satisfying $\sigma T=T^{2} \sigma$, same as $2(x+1)=2 x+2$.

Adics and shifts

- The adic is transverse to the shift. In a self-similar tiling system, translation is like the adic, while changing scale within the hierarchy corresponds to the shift.
- The adic transformation is the successor map: it is like counting.
- The shift is like multiplication. In fact $\sigma x=2 x$ and $T x=x+1$ on two-sided binary sequences as coefficients of powers of 2 .
- The maps T and σ are transverse, satisfying $\sigma T=T^{2} \sigma$, same as $2(x+1)=2 x+2$.
- This is analogous to $h_{s e^{-t}} g_{t}=g_{t} h_{s}$ for the horocycle and geodesic flows.

Invariant measures for shift vs. adic on SFT

- The unique invariant measure for the adic on a SFT Σ_{M} assigns equal measure to all cylinder sets determined by paths from the root to a selected vertex.

Invariant measures for shift vs. adic on SFT

- The unique invariant measure for the adic on a SFT Σ_{M} assigns equal measure to all cylinder sets determined by paths from the root to a selected vertex.
- The measure of maximal entropy on Σ_{M} assigns pretty much the same measure to all cylinder sets of a fixed length.

Zeckendorf Representation

Consider the Fibonacci sequence

$$
\left(f_{n}\right)=(1,2,3,5,8,13, \ldots)
$$

Zeckendorf Representation

Consider the Fibonacci sequence

$$
\left(f_{n}\right)=(1,2,3,5,8,13, \ldots)
$$

Every $x \in \mathbb{N}$ has a unique representation $x=\sum_{i=0}^{k} x_{i} f_{i}$ with no $x_{i} x_{i+1}=11$.

Golden mean odometer

Counting in this system corresponds to applying the adic transformation on the following graph:

Golden mean odometer

Counting in this system corresponds to applying the adic transformation on the following graph:

Pascal adic

space of infinite downward paths $X \cong\{0,1\}^{\mathbb{N}}$

$$
T\left(0^{p} 1^{q} 10 *\right)=1^{q} 0^{p} 01 *, \quad p, q \geq 0
$$

Action of the Pascal adic

Pascal by cutting and stacking

Pascal as a subshift

$$
\begin{array}{cc}
b & a \\
c & b \\
b & b a
\end{array} a
$$

Adics and tail fields

- Adic-invariant sets correspond to tail fields for the associated stochastic processes.

Adics and tail fields

- Adic-invariant sets correspond to tail fields for the associated stochastic processes.
- For the odometer, it's the Kolmogorov tail field of sets invariant under changes of finitely many coordinates.

Adics and tail fields

- Adic-invariant sets correspond to tail fields for the associated stochastic processes.
- For the odometer, it's the Kolmogorov tail field of sets invariant under changes of finitely many coordinates.
- For the Pascal adic, it's the field of symmetric sets invariant under permutations of finitely many coordinates.

Adics and tail fields

- Adic-invariant sets correspond to tail fields for the associated stochastic processes.
- For the odometer, it's the Kolmogorov tail field of sets invariant under changes of finitely many coordinates.
- For the Pascal adic, it's the field of symmetric sets invariant under permutations of finitely many coordinates.
- So dynamical properties of the adic transformations (such as ergodicity) correspond to 0,1 laws in probability (such as Hewitt-Savage).

Adics and tail fields

- Adic-invariant sets correspond to tail fields for the associated stochastic processes.
- For the odometer, it's the Kolmogorov tail field of sets invariant under changes of finitely many coordinates.
- For the Pascal adic, it's the field of symmetric sets invariant under permutations of finitely many coordinates.
- So dynamical properties of the adic transformations (such as ergodicity) correspond to 0,1 laws in probability (such as Hewitt-Savage).
- Strengthenings of ergodicity (such as weak mixing) would therefore imply new results in probability.

Usefulness of adics

- Bratteli-Vershik diagrams can be read as instructions for cutting and stacking procedures used to define maps of the interval in traditional ergodic theory.

Usefulness of adics

- Bratteli-Vershik diagrams can be read as instructions for cutting and stacking procedures used to define maps of the interval in traditional ergodic theory.
- Every ergodic measure-preserving system is isomorphic to a uniquely ergodic adic system (Vershik 1981).

Usefulness of adics

- Bratteli-Vershik diagrams can be read as instructions for cutting and stacking procedures used to define maps of the interval in traditional ergodic theory.
- Every ergodic measure-preserving system is isomorphic to a uniquely ergodic adic system (Vershik 1981).
- Stationary Bratteli-Vershik systems ~ odometers and substitution symbolic dynamical systems (Vershik, Livshitz, Forrest, Durand-Host-Skau).

Usefulness of adics

- Bratteli-Vershik diagrams can be read as instructions for cutting and stacking procedures used to define maps of the interval in traditional ergodic theory.
- Every ergodic measure-preserving system is isomorphic to a uniquely ergodic adic system (Vershik 1981).
- Stationary Bratteli-Vershik systems \sim odometers and substitution symbolic dynamical systems (Vershik, Livshitz, Forrest, Durand-Host-Skau).
- The adic representation suggests the use of C^{*} ideas such as dimension groups (Elliott 1976 and 1993, Effros-Handelman-Shen 1980)

Representation of topological dynamical systems

- Herman, Putnam, Skau (1992): Minimal homeomorphisms of the Cantor set are topologically conjugate to adic systems which are simple (there is a telescoping with all positive transition matrices) and have unique maximal and minimal paths.

Representation of topological dynamical systems

- Herman, Putnam, Skau (1992): Minimal homeomorphisms of the Cantor set are topologically conjugate to adic systems which are simple (there is a telescoping with all positive transition matrices) and have unique maximal and minimal paths.
- Medynets (2006): Every Cantor topological dynamical system without periodic points has an adic representation (with a well-defined Vershik map that is a homeomorphism mapping the set of maximal paths to the set of minimal paths).

Representation of topological dynamical systems

- Herman, Putnam, Skau (1992): Minimal homeomorphisms of the Cantor set are topologically conjugate to adic systems which are simple (there is a telescoping with all positive transition matrices) and have unique maximal and minimal paths.
- Medynets (2006): Every Cantor topological dynamical system without periodic points has an adic representation (with a well-defined Vershik map that is a homeomorphism mapping the set of maximal paths to the set of minimal paths).
- Key tool: A topological Rohlin lemma using clopen sets as the levels.

Representation of topological dynamical systems

- Herman, Putnam, Skau (1992): Minimal homeomorphisms of the Cantor set are topologically conjugate to adic systems which are simple (there is a telescoping with all positive transition matrices) and have unique maximal and minimal paths.
- Medynets (2006): Every Cantor topological dynamical system without periodic points has an adic representation (with a well-defined Vershik map that is a homeomorphism mapping the set of maximal paths to the set of minimal paths).
- Key tool: A topological Rohlin lemma using clopen sets as the levels.
- An earlier version was used by Denker (1972—see Denker-Grillenberger-Sigmund 1976) to prove existence of a topological generator for the closure of the complement of the set of periodic points.

Representation of topological dynamical systems

- Herman, Putnam, Skau (1992): Minimal homeomorphisms of the Cantor set are topologically conjugate to adic systems which are simple (there is a telescoping with all positive transition matrices) and have unique maximal and minimal paths.
- Medynets (2006): Every Cantor topological dynamical system without periodic points has an adic representation (with a well-defined Vershik map that is a homeomorphism mapping the set of maximal paths to the set of minimal paths).
- Key tool: A topological Rohlin lemma using clopen sets as the levels.
- An earlier version was used by Denker (1972—see Denker-Grillenberger-Sigmund 1976) to prove existence of a topological generator for the closure of the complement of the set of periodic points.
- A version in symbolic dynamics called the Marker Lemma is used to prove the Krieger Embedding Theorem for SFT's: There is an embedding $X \rightarrow Y$ if and only if $h(X)<h(Y)$ and the periodic points of X embed in those of Y-see Lind-Marcus (1995, Lemma 10.1.8, p. 343).

Orbit equivalence of Cantor minimal systems

- Giordano-Putnam-Skau (1995) showed that two Cantor minimal systems are topologically orbit equivalent if and only if their reduced dimension groups are isomorphic as ordered groups with distinguished order units.

Orbit equivalence of Cantor minimal systems

- Giordano-Putnam-Skau (1995) showed that two Cantor minimal systems are topologically orbit equivalent if and only if their reduced dimension groups are isomorphic as ordered groups with distinguished order units.
- They are topologically strongly orbit equivalent if and only if their dimension groups are isomorphic as ordered groups with distinguished order units.

Orbit equivalence of Cantor minimal systems

- Giordano-Putnam-Skau (1995) showed that two Cantor minimal systems are topologically orbit equivalent if and only if their reduced dimension groups are isomorphic as ordered groups with distinguished order units.
- They are topologically strongly orbit equivalent if and only if their dimension groups are isomorphic as ordered groups with distinguished order units.
- $\left(X_{1}, T_{1}\right)$ and $\left(X_{2}, T_{2}\right)$ are strongly orbit equivalent if there is a homeomorphism $h: X_{1} \rightarrow X_{2}$ such that the time change cocycles $a(x)$ and $b(x)$ defined by

$$
h T_{1}^{a(x)} h^{-1} x=T_{2} x, \quad h^{-1} T_{2}^{b(x)} h(x)=T_{1}(x)
$$

have at most one point of discontinuity each.

Dimension group

The dimension group G of an adic system is the direct limit of

$$
\mathbb{Z} \rightarrow^{M_{1}} \mathbb{Z}^{|\mathcal{V}(1)|} \rightarrow^{M_{2}} \mathbb{Z}^{|\mathcal{V}(2)|} \rightarrow^{M_{3}} \cdots
$$

Dimension group

The dimension group G of an adic system is the direct limit of

$$
\mathbb{Z} \rightarrow^{M_{1}} \mathbb{Z}^{|\mathcal{V}(1)|} \rightarrow^{M_{2}} \mathbb{Z}^{|\mathcal{V}(2)|} \rightarrow^{M_{3}} \cdots
$$

- Namely, the quotient of

$$
P=\left\{v \in \prod_{n \geq 0} \mathbb{Z}^{|\mathcal{V}(n)|}: M_{n} v_{n}=v_{n+1} \quad \text { for all large enough } n\right\}
$$

by

$$
\left\{v \in P: v_{n}=0 \text { for all large enough } n\right\} .
$$

Dimension group

The dimension group G of an adic system is the direct limit of

$$
\mathbb{Z} \rightarrow^{M_{1}} \mathbb{Z}^{|\mathcal{V}(1)|} \rightarrow^{M_{2}} \mathbb{Z}^{|\mathcal{V}(2)|} \rightarrow^{M_{3}} \ldots
$$

- Namely, the quotient of

$$
P=\left\{v \in \prod_{n \geq 0} \mathbb{Z}^{|\mathcal{V}(n)|}: M_{n} v_{n}=v_{n+1} \quad \text { for all large enough } n\right\}
$$

by

$$
\left\{v \in P: v_{n}=0 \text { for all large enough } n\right\} .
$$

- It is isomorphic to $\mathcal{C}(X, \mathbb{Z}) / \partial \mathcal{C}(X, \mathbb{Z})$, where $\partial \mathcal{C}(X, \mathbb{Z})=\{f-f T: f \in \mathcal{C}(X, \mathbb{Z})\}$.

Measures and infinitesimals

- T-invariant measures on X correspond to states or traces-group homomorphisms $\phi: G \rightarrow \mathbb{R}$ such that $\phi\left(G^{+}\right) \subset[0, \infty]$ and $\phi(u)=1$ by $\phi_{\mu}[f]=\int_{X} f d \mu \quad(f \in \mathcal{C}(X, \mathbb{Z})$.

Measures and infinitesimals

- T-invariant measures on X correspond to states or traces-group homomorphisms $\phi: G \rightarrow \mathbb{R}$ such that $\phi\left(G^{+}\right) \subset[0, \infty]$ and $\phi(u)=1$ by $\phi_{\mu}[f]=\int_{X} f d \mu \quad(f \in \mathcal{C}(X, \mathbb{Z})$.
- The infinitesimals in G are

$$
\begin{aligned}
\operatorname{lnf}(G) & =\{g \in G: n g<u \text { for all } n \in \mathbb{Z}\} \\
& =\{g \in G: \phi(g)=0 \text { for all traces } \phi\} \\
& =\left\{[f]: \quad \int_{X} f d \mu=0 \text { for every invariant measure } \mu\right\}
\end{aligned}
$$

Measures and infinitesimals

- T-invariant measures on X correspond to states or traces-group homomorphisms $\phi: G \rightarrow \mathbb{R}$ such that $\phi\left(G^{+}\right) \subset[0, \infty]$ and $\phi(u)=1$ by $\phi_{\mu}[f]=\int_{X} f d \mu \quad(f \in \mathcal{C}(X, \mathbb{Z})$.
- The infinitesimals in G are

$$
\begin{aligned}
\operatorname{lnf}(G) & =\{g \in G: n g<u \text { for all } n \in \mathbb{Z}\} \\
& =\{g \in G: \phi(g)=0 \text { for all traces } \phi\} \\
& =\left\{[f]: \quad \int_{X} f d \mu=0 \text { for every invariant measure } \mu\right\}
\end{aligned}
$$

- The reduced dimension group is $G / \operatorname{lnf}(G)$.

Some important recent work on adics

- Pursuing work and conjectures of Boyle and Handelman (1994), Ormes (1997) proved realizability of given ergodic measure-preserving systems within topological orbit equivalence and strong topological orbit equivalence classes of Cantor minimal systems.

Some important recent work on adics

- Pursuing work and conjectures of Boyle and Handelman (1994), Ormes (1997) proved realizability of given ergodic measure-preserving systems within topological orbit equivalence and strong topological orbit equivalence classes of Cantor minimal systems.
- We are given an ergodic nonatomic measure-preserving system (Y, S, ν) and a Cantor minimal system (X, T_{1}) and want to find a topological realization:

Some important recent work on adics

- Pursuing work and conjectures of Boyle and Handelman (1994), Ormes (1997) proved realizability of given ergodic measure-preserving systems within topological orbit equivalence and strong topological orbit equivalence classes of Cantor minimal systems.
- We are given an ergodic nonatomic measure-preserving system (Y, S, ν) and a Cantor minimal system (X, T_{1}) and want to find a topological realization:
- a Cantor minimal system (X, T_{2}) which is topologically strongly orbit equivalent to (X, T_{1}) and has an invariant measure μ_{2} that makes it measure-theoretically isomorphic to the given (Y, S, ν).

Some important recent work on adics

- Pursuing work and conjectures of Boyle and Handelman (1994), Ormes (1997) proved realizability of given ergodic measure-preserving systems within topological orbit equivalence and strong topological orbit equivalence classes of Cantor minimal systems.
- We are given an ergodic nonatomic measure-preserving system (Y, S, ν) and a Cantor minimal system (X, T_{1}) and want to find a topological realization:
- a Cantor minimal system (X, T_{2}) which is topologically strongly orbit equivalent to (X, T_{1}) and has an invariant measure μ_{2} that makes it measure-theoretically isomorphic to the given (Y, S, ν).
- Ormes' Strong Orbit Realization Theorem says that this is possible exactly when the continuous rational point spectrum of T_{1} is contained in the point spectrum of (Y, S, ν).
- Moreover, given also an ergodic T_{1}-invariant measure μ_{1}, one can arrange that the o.e. mapping h between T_{1} and T_{2} is the identity, and $\mu_{2}=\mu_{1}$.
- Moreover, given also an ergodic T_{1}-invariant measure μ_{1}, one can arrange that the o.e. mapping h between T_{1} and T_{2} is the identity, and $\mu_{2}=\mu_{1}$.
- For topological orbit equivalence, the condition about embedding of rational point spectrum is not needed: Ormes' Orbit Realization Theorem says that, given $\left(X, T_{1}\right)$ and (Y, S, ν) as above, and a T_{1}-invariant measure μ_{2}, there is a Cantor minimal $\left(X, T_{2}\right)$ that is topologically orbit equivalent to (X, T_{1}) and such that $\left(X, T_{2}, \mu_{2}\right)$ is measure-theoretically isomorphic to (Y, S, ν).
- A corollary of SORT is a topological version of Dye's Theorem: any two ergodic nonatomic systems have topologically strongly orbit equivalent realizations as minimal homeomorphisms of the Cantor set with the same invariant measure.
- A corollary of SORT is a topological version of Dye's Theorem: any two ergodic nonatomic systems have topologically strongly orbit equivalent realizations as minimal homeomorphisms of the Cantor set with the same invariant measure.
- Also, within the topological strong orbit equivalence class of each uniquely ergodic Cantor minimal system one can find all entropies in $[0, \infty]$. (Extending results of Boyle-Handelman 1994, Sugisaki 1996 showed this for general minimal Cantor systems).
- A corollary of SORT is a topological version of Dye's Theorem: any two ergodic nonatomic systems have topologically strongly orbit equivalent realizations as minimal homeomorphisms of the Cantor set with the same invariant measure.
- Also, within the topological strong orbit equivalence class of each uniquely ergodic Cantor minimal system one can find all entropies in $[0, \infty]$. (Extending results of Boyle-Handelman 1994, Sugisaki 1996 showed this for general minimal Cantor systems).
- This was generalized by Kornfeld and Ormes in 2006 to show that isomorphic copies of any at most countable family of m.p.t's can be found within the o.e. class of any Cantor minimal system:
- A corollary of SORT is a topological version of Dye's Theorem: any two ergodic nonatomic systems have topologically strongly orbit equivalent realizations as minimal homeomorphisms of the Cantor set with the same invariant measure.
- Also, within the topological strong orbit equivalence class of each uniquely ergodic Cantor minimal system one can find all entropies in $[0, \infty]$. (Extending results of Boyle-Handelman 1994, Sugisaki 1996 showed this for general minimal Cantor systems).
- This was generalized by Kornfeld and Ormes in 2006 to show that isomorphic copies of any at most countable family of m.p.t's can be found within the o.e. class of any Cantor minimal system:
- Given an at most countable family of a ergodic m.p.t.'s on nonatomic Lebesgue probability spaces and a Cantor minimal system (X, T_{1}) with at least a ergodic measures, for any a of these measures there is T_{2} on X that is o.e. to T_{1} and with respect to each measure measure-theoretically isomorphic to its corresponding given m.p.t.
- A corollary of SORT is a topological version of Dye's Theorem: any two ergodic nonatomic systems have topologically strongly orbit equivalent realizations as minimal homeomorphisms of the Cantor set with the same invariant measure.
- Also, within the topological strong orbit equivalence class of each uniquely ergodic Cantor minimal system one can find all entropies in $[0, \infty]$. (Extending results of Boyle-Handelman 1994, Sugisaki 1996 showed this for general minimal Cantor systems).
- This was generalized by Kornfeld and Ormes in 2006 to show that isomorphic copies of any at most countable family of m.p.t's can be found within the o.e. class of any Cantor minimal system:
- Given an at most countable family of a ergodic m.p.t.'s on nonatomic Lebesgue probability spaces and a Cantor minimal system (X, T_{1}) with at least a ergodic measures, for any a of these measures there is T_{2} on X that is o.e. to T_{1} and with respect to each measure measure-theoretically isomorphic to its corresponding given m.p.t.
- Strong orbit equivalence is achieved under conditions as before on rational point spectrum.
- Downarowicz and Maass (ETDS 2008) showed that a Cantor minimal system of finite topological rank (one that is topologically conjugate to a simple (has a telescoping with positive incidence matrices) properly ordered (unique maximal and minimal paths) adic system with a uniformly bounded number of vertices on each level) is either topologically conjugate to an odometer (i.e. has topological rank 1) or else is expansive (i.e. is topologically conjugate to a subshift determined by coding paths according to initial segments of a fixed length).
- Downarowicz and Maass (ETDS 2008) showed that a Cantor minimal system of finite topological rank (one that is topologically conjugate to a simple (has a telescoping with positive incidence matrices) properly ordered (unique maximal and minimal paths) adic system with a uniformly bounded number of vertices on each level) is either topologically conjugate to an odometer (i.e. has topological rank 1) or else is expansive (i.e. is topologically conjugate to a subshift determined by coding paths according to initial segments of a fixed length).
- Bezuglyi, Kwiatkowski, and Medynets (2009) studied aperiodic (non-primitive) substitution systems by means of their adic representations and showed that they have stationary adic representations and are recognizable.
- Downarowicz and Maass (ETDS 2008) showed that a Cantor minimal system of finite topological rank (one that is topologically conjugate to a simple (has a telescoping with positive incidence matrices) properly ordered (unique maximal and minimal paths) adic system with a uniformly bounded number of vertices on each level) is either topologically conjugate to an odometer (i.e. has topological rank 1) or else is expansive (i.e. is topologically conjugate to a subshift determined by coding paths according to initial segments of a fixed length).
- Bezuglyi, Kwiatkowski, and Medynets (2009) studied aperiodic (non-primitive) substitution systems by means of their adic representations and showed that they have stationary adic representations and are recognizable.
- They also extended the Downarowicz-Maass result to aperiodic Cantor systems of finite rank, proving that either they are expansive or else all of their minimal components are topologically conjugate to odometers.
- Gjerde-Johanssen (2000) Characterized the adic systems that represent Toeplitz subshifts.
- Gjerde-Johanssen (2000) Characterized the adic systems that represent Toeplitz subshifts.
- Recall that a Toeplitz sequence (Jacobs-Keane 1969) is a sequence $\omega \in A^{\mathbb{Z}}$ such that for each n there is p such that $\omega_{n}=\omega_{n+j p}$ for all $j \in \mathbb{Z}$. The orbit closure of a Toeplitz sequence is a Toeplitz system. These are exactly the minimal subshifts that are almost one-to-one extensions of odometers.
- Gjerde-Johanssen (2000) Characterized the adic systems that represent Toeplitz subshifts.
- Recall that a Toeplitz sequence (Jacobs-Keane 1969) is a sequence $\omega \in A^{\mathbb{Z}}$ such that for each n there is p such that $\omega_{n}=\omega_{n+j p}$ for all $j \in \mathbb{Z}$. The orbit closure of a Toeplitz sequence is a Toeplitz system. These are exactly the minimal subshifts that are almost one-to-one extensions of odometers.
- Gjerde and Johanssen showed that a minimal subshift is a Toeplitz system if and only if it is topologically conjugate to an expansive adic system that has the equal path number property: for all $n \geq 1$, each vertex in $\mathcal{V}(n)$ has the same number of entering edges from $\mathcal{V}(n-1)$. (But the EPN property does not imply expansive nor equicontinuous.)
- Bezuglyi-Kwiatkowski-Yassawi (2012) studied arbitrary reorderings of adic systems, seeking to determine for which ones the adic transformation can be defined as a homeomorphism-the "perfect" orders.
- Bezuglyi-Kwiatkowski-Yassawi (2012) studied arbitrary reorderings of adic systems, seeking to determine for which ones the adic transformation can be defined as a homeomorphism-the "perfect" orders.
- Such (nondegenerate) adic systems represent all aperiodic homeomorphisms of the Cantor set.
- Bezuglyi-Kwiatkowski-Yassawi (2012) studied arbitrary reorderings of adic systems, seeking to determine for which ones the adic transformation can be defined as a homeomorphism-the "perfect" orders.
- Such (nondegenerate) adic systems represent all aperiodic homeomorphisms of the Cantor set.
- Earlier, Medynets (2006) had given an example of a diagram for which no ordering is perfect.
- Bezuglyi-Kwiatkowski-Yassawi (2012) studied arbitrary reorderings of adic systems, seeking to determine for which ones the adic transformation can be defined as a homeomorphism-the "perfect" orders.
- Such (nondegenerate) adic systems represent all aperiodic homeomorphisms of the Cantor set.
- Earlier, Medynets (2006) had given an example of a diagram for which no ordering is perfect.
- Bezuglyi-Kwiatkowski-Yassawi showed that for a uniformly random reordering of an adic system of finite rank r, there is $J \in\{1, \ldots, r\}$ such that almost every ordering has J maximal and J minimal paths.
- Bezuglyi-Kwiatkowski-Yassawi (2012) studied arbitrary reorderings of adic systems, seeking to determine for which ones the adic transformation can be defined as a homeomorphism-the "perfect" orders.
- Such (nondegenerate) adic systems represent all aperiodic homeomorphisms of the Cantor set.
- Earlier, Medynets (2006) had given an example of a diagram for which no ordering is perfect.
- Bezuglyi-Kwiatkowski-Yassawi showed that for a uniformly random reordering of an adic system of finite rank r, there is $J \in\{1, \ldots, r\}$ such that almost every ordering has J maximal and J minimal paths.
- And if J is greater than the number of minimal components, then almost every ordering is not perfect.
- Bezuglyi-Kwiatkowski-Yassawi (2012) studied arbitrary reorderings of adic systems, seeking to determine for which ones the adic transformation can be defined as a homeomorphism-the "perfect" orders.
- Such (nondegenerate) adic systems represent all aperiodic homeomorphisms of the Cantor set.
- Earlier, Medynets (2006) had given an example of a diagram for which no ordering is perfect.
- Bezuglyi-Kwiatkowski-Yassawi showed that for a uniformly random reordering of an adic system of finite rank r, there is $J \in\{1, \ldots, r\}$ such that almost every ordering has J maximal and J minimal paths.
- And if J is greater than the number of minimal components, then almost every ordering is not perfect.
- Bezuglyi-Yassawi (2013) studied in detail orderings beyond the finite rank case and gave necessary and sufficient conditions for a diagram to admit a perfect ordering.
- Bezuglyi-Kwiatkowski-Yassawi (2012) studied arbitrary reorderings of adic systems, seeking to determine for which ones the adic transformation can be defined as a homeomorphism-the "perfect" orders.
- Such (nondegenerate) adic systems represent all aperiodic homeomorphisms of the Cantor set.
- Earlier, Medynets (2006) had given an example of a diagram for which no ordering is perfect.
- Bezuglyi-Kwiatkowski-Yassawi showed that for a uniformly random reordering of an adic system of finite rank r, there is $J \in\{1, \ldots, r\}$ such that almost every ordering has J maximal and J minimal paths.
- And if J is greater than the number of minimal components, then almost every ordering is not perfect.
- Bezuglyi-Yassawi (2013) studied in detail orderings beyond the finite rank case and gave necessary and sufficient conditions for a diagram to admit a perfect ordering.
- Yassawi and Janssen (2014) produce a class of infinite rank diagrams similar to those of Toeplitz systems for which $J=\infty$.
- Hamachi-Keane-Roychowdhury (2008) proved that Dye's Theorem holds in the finitary category: Any two adic systems with nonatomic invariant ergodic probabilities are finitarily orbit equivalent.
- Hamachi-Keane-Roychowdhury (2008) proved that Dye's Theorem holds in the finitary category: Any two adic systems with nonatomic invariant ergodic probabilities are finitarily orbit equivalent.
- Rudolph, Roychowdhury, del Junco, Weiss, Şahin, Dykstra, and Springer studied finitary and "nearly continuous" or "almost continuous" orbit and Kakutani equivalence.
- Hamachi-Keane-Roychowdhury (2008) proved that Dye's Theorem holds in the finitary category: Any two adic systems with nonatomic invariant ergodic probabilities are finitarily orbit equivalent.
- Rudolph, Roychowdhury, del Junco, Weiss, Şahin, Dykstra, and Springer studied finitary and "nearly continuous" or "almost continuous" orbit and Kakutani equivalence.
- Frank-Sadun (in progress) define "fusion tiling systems", which can be viewed as generalized higher-dimensional adic actions-analogous to the translation action of \mathbb{R} on the space of tilings of the line generated by a substitution such as $0 \rightarrow 01,1 \rightarrow 0$.
- "Finitary" means that after an invariant set of measure 0 is removed, the map is a homeomorphism (between topological spaces). For maps between subshifts, this means that almost surely each symbol in the output depends only on a variable-length window in the input.
- "Finitary" means that after an invariant set of measure 0 is removed, the map is a homeomorphism (between topological spaces). For maps between subshifts, this means that almost surely each symbol in the output depends only on a variable-length window in the input.
- "Nearly continuous" or "almost continuous" means that the map is a homeomorphism once restricted to invariant G_{δ} sets of full measure (in a Polish space).

Some current work on arbitrary orderings

- Sarah Bailey Frick, Sandi Shields, and I are also considering properties of arbitrary orderings of Bratteli diagrams.

Some current work on arbitrary orderings

- Sarah Bailey Frick, Sandi Shields, and I are also considering properties of arbitrary orderings of Bratteli diagrams.
- Xavier Méla (2002) proved that the Pascal adic system is essentially expansive: any infinite paths not in a countable invariant set can be distinguished by their codings according to the first edge

Some current work on arbitrary orderings

- Sarah Bailey Frick, Sandi Shields, and I are also considering properties of arbitrary orderings of Bratteli diagrams.
- Xavier Méla (2002) proved that the Pascal adic system is essentially expansive: any infinite paths not in a countable invariant set can be distinguished by their codings according to the first edge
- Sarah Bailey (2006) extended this to a wide class of "scope 1" systems, which includes her polynomial systems and the Eulerian adic discussed later.

Some current work on arbitrary orderings

- Sarah Bailey Frick, Sandi Shields, and I are also considering properties of arbitrary orderings of Bratteli diagrams.
- Xavier Méla (2002) proved that the Pascal adic system is essentially expansive: any infinite paths not in a countable invariant set can be distinguished by their codings according to the first edge
- Sarah Bailey (2006) extended this to a wide class of "scope 1" systems, which includes her polynomial systems and the Eulerian adic discussed later.
- We think that now we can prove that the Pascal with any ordering is essentially expansive in this sense.

Some current work on arbitrary orderings

- Sarah Bailey Frick, Sandi Shields, and I are also considering properties of arbitrary orderings of Bratteli diagrams.
- Xavier Méla (2002) proved that the Pascal adic system is essentially expansive: any infinite paths not in a countable invariant set can be distinguished by their codings according to the first edge
- Sarah Bailey (2006) extended this to a wide class of "scope 1" systems, which includes her polynomial systems and the Eulerian adic discussed later.
- We think that now we can prove that the Pascal with any ordering is essentially expansive in this sense.
- There are orderings of the Pascal graph with uncountably many maximal and minimal paths, although for each ordering and each invariant probability the set of maximal and minimal paths has measure 0 .
- We are also trying to estimate the asymptotic complexity for the coding of each ordering, as well as the expected asymptotic complexity-more about this later.
- We are also trying to estimate the asymptotic complexity for the coding of each ordering, as well as the expected asymptotic complexity-more about this later.
- We are also starting to study the "large subshift": the closure of the union of the subshifts from codings of all adics coming from orderings of the Pascal graph.

Stationary adics

- We describe first the stationary adic system (on an infinite downward directed graph) that arises from a finite directed graph.
- Vertices divided into levels, with the number on each level equal to the total number in the finite graph
- Each vertex on level n corresponds to a vertex in the finite graph. Connect the edges accord-
 ing to the allowed transitions in the SFT.

The full shift on $\{0,1\}$ generates the binary odometer

$$
\begin{array}{ll}
\gamma=.01011 \ldots & \\
\sigma(\gamma)=.1011 \ldots & S(\gamma)=.11011 \ldots \\
\sigma^{2}(\gamma)=.011 \ldots & S^{2}(\gamma)=.00111 \ldots
\end{array}
$$

This stationary adic is the dyadic odometer.
The adic transformation is transverse to the shift.
The translation action in a self-similar tiling system is like the adic, while the shift is like a change of scale (action of a substitution). This is similar to transverse actions of horocycle and geodesic flows.

Symbol count adics

- Keeps track of symbol counts
- Regardless of path to vertex, same symbol counts vector
- Each path in the symbol count adic gives the history from time 0 of the random walk on the
 labeled edge graph

The symbol count adic for the full shift is the Pascal adic

These are the adic invariant, fully-supported ergodic probability measures on the Pascal adic (Hewitt-Savage, de Finetti).
Cylinders are given measures by multiplying the weights on their edges. The diagram defines the "CCR" C^{*} algebra, found already in Bratteli's 1972 paper.

Higher-dimensional Pascal

- We can think of walks in higher dimensions. $p(x, y, z)=x+y+z$
- The number of paths from $(0,0,0)$ to (a, b, c) is the coefficient of $x^{a} y^{b} z^{c}$ in $(p(x, y, z))^{a+b+c}$
- the three-dimensional Pascal has three "normal" Pascal adics as invariant sets.
- The ergodic invariant measures are given by weights α, β, γ on the edges.

Higher dimensional Pascal

- We can think of polynomials in more variables, $p(x, y, z)=x+y+z$
- The number for paths from $(0,0,0)$ to (a, b, c) is the coefficient of $x^{a} y^{b} z^{c}$ in $(p(x, y, z))^{a+b+c}$
- Has three "normal" Pascal adics as invariant sets

Reinforced random walk (or urn model)

- Reinforcement scheme on a finite directed graph: For each edge e we have $v_{e} \in \mathbb{Z}_{+}^{2}$ that tells what to add to the weights on the edges.
- Start with initial vector $v_{i}=(s, s)$, corresponding to equal probability of each edge
- As edge e is traversed, add v_{e} to the accumulated sum of the v_{i} and normalize to obtain the probabilities of taking each edge. This defines the walk measure.

Reinforced random walk

- For each edge e let $v_{e} \in \mathbb{Z}_{+}^{2}$
- Start with initial vector $v_{i}=(s, s)$, corresponding to equal probability of each edge
- As edge e is traversed, add v_{e} to v_{i} and normalize to obtain the probabilities of taking each edge.

$$
v_{L}=(0,1)
$$

Positively reinforced random walk on two loops: the reverse Euler adic

Negatively reinforced random walk on two loops: the Euler adic

The Walk Measures (not necessarily invariant or ergodic)

- Adic invariant
- Gives each edge connecting level n to level $n+1$ weight $\frac{1}{n+2}$.
- Gives each cylinder of length n measure $\frac{1}{(n+1)!}$

Counting paths: $\operatorname{dim}\left(C, x_{n}\right)$ and $\operatorname{dim}\left(x_{n}\right)$

- Let $\operatorname{dim}\left(x_{n}\right)$ be the number of finite paths from the root vertex to vertex through which the path x passes at level n.
- For any cylinder C, let $\operatorname{dim}\left(C, x_{n}\right)$ be the number of paths in C that agree with x_{n} after level n.
- Theorem (Vershik) If (X, T) is a Bratteli-Vershik system and μ is an ergodic, T-invariant measure on X, then for any cylinder $C \subset X$ and μ-a.e. x,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{dim}\left(C, x_{n}\right)}{\operatorname{dim}\left(x_{n}\right)}=\mu(C)
$$

- Proved by Ergodic Theorem or Reverse Martingale Theorem.
- Also can use generalized Perron-Frobenius Theorem, as with substitutions.

Ergodic Measures on the Reverse Euler

- Let μ be an ergodic measure on X_{R} and C a cylinder in X_{R}, for μ-a.e. $x \in X_{R}$,

$$
\mu[C]=\lim _{n \rightarrow \infty} \frac{\operatorname{dim}(C,(n, k))}{n!}=\frac{(\alpha)^{k_{0}}(1-\alpha)^{n_{0}-k_{0}}}{k_{0}!\left(n_{0}-k_{0}\right)!} .
$$

Dimensions of vertices in the Euler graph: Eulerian numbers

Ergodicity of the walk measure on the Eulerian adic

- Ergodicity was proved by Frick, Keane, KP, Salama, using a supermartingale argument.

Ergodicity of the walk measure on the Eulerian adic

- Ergodicity was proved by Frick, Keane, KP, Salama, using a supermartingale argument.
- Unique fully supported ergodicity was proved by Frick, KP, using a coding of paths by permutations.

Ergodicity of the walk measure on the Eulerian adic

- Ergodicity was proved by Frick, Keane, KP, Salama, using a supermartingale argument.
- Unique fully supported ergodicity was proved by Frick, KP, using a coding of paths by permutations.
- We also learned of related results about the Eulerian graph by Alexander Gnedin and Grigori Olshanski, from the point of view of Martin boundaries.

Ergodicity of the walk measure on the Eulerian adic

- Ergodicity was proved by Frick, Keane, KP, Salama, using a supermartingale argument.
- Unique fully supported ergodicity was proved by Frick, KP, using a coding of paths by permutations.
- We also learned of related results about the Eulerian graph by Alexander Gnedin and Grigori Olshanski, from the point of view of Martin boundaries.
- A second proof of unique fully supported ergodicity was found by KP and A . Varchenko with hopes to extend it to more dimensions.

Ergodicity of the walk measure on the Eulerian adic

- Ergodicity was proved by Frick, Keane, KP, Salama, using a supermartingale argument.
- Unique fully supported ergodicity was proved by Frick, KP, using a coding of paths by permutations.
- We also learned of related results about the Eulerian graph by Alexander Gnedin and Grigori Olshanski, from the point of view of Martin boundaries.
- A second proof of unique fully supported ergodicity was found by KP and A. Varchenko with hopes to extend it to more dimensions.
- This approach, via a formula for generalized Eulerian numbers, also identifies the generic paths for η and yields convergence of the dimension quotients in sectors rather than along a.e. path.

Dynamics of the Euler adic

Theorem（Bailey－Keane－KP－Salama）
The symmetric measure η is ergodic．

Dynamics of the Euler adic

Theorem (Bailey-Keane-KP-Salama)
The symmetric measure η is ergodic.
By the Ergodic Theorem, or Reverse Martingale Theorem (Vershik), for each cylinder set C ending in a fixed vertex λ, $\frac{\operatorname{dim}\left(\lambda, t_{j}\right)}{\operatorname{dim}\left(t_{j}\right)} \rightarrow E\left(\chi_{C} \mid \mathcal{I}\right)$ a.e.

Dynamics of the Euler adic

Theorem (Bailey-Keane-KP-Salama)
The symmetric measure η is ergodic.
By the Ergodic Theorem, or Reverse Martingale Theorem (Vershik), for each cylinder set C ending in a fixed vertex λ, $\frac{\operatorname{dim}\left(\lambda, t_{j}\right)}{\operatorname{dim}\left(t_{j}\right)} \rightarrow E\left(\chi_{C} \mid \mathcal{I}\right)$ a.e.

To prove erodicity, we just need to show the limit is constant a.e..

Dynamics of the Euler adic

Theorem (Bailey-Keane-KP-Salama)
The symmetric measure η is ergodic.
By the Ergodic Theorem, or Reverse Martingale Theorem (Vershik), for each cylinder set C ending in a fixed vertex λ, $\frac{\operatorname{dim}\left(\lambda, t_{j}\right)}{\operatorname{dim}\left(t_{j}\right)} \rightarrow E\left(\chi_{C} \mid \mathcal{I}\right)$ a.e.
To prove erodicity, we just need to show the limit is constant a.e.. For the Pascal adic this is not hard, because of properties of binomial coefficients or isotropy of the graph (Méla).
For the Eulerian numbers, it's much harder.

Dynamics of the Euler adic

Theorem (Bailey-Keane-KP-Salama)
The symmetric measure η is ergodic.
By the Ergodic Theorem, or Reverse Martingale Theorem (Vershik), for each cylinder set C ending in a fixed vertex λ,
$\frac{\operatorname{dim}\left(\lambda, t_{j}\right)}{\operatorname{dim}\left(t_{j}\right)} \rightarrow E\left(\chi_{C} \mid \mathcal{I}\right)$ a.e.
To prove erodicity, we just need to show the limit is constant a.e..
For the Pascal adic this is not hard, because of properties of binomial coefficients or isotropy of the graph (Méla).
For the Eulerian numbers, it's much harder.
Instead we adapted Mike Keane's approach to prove ergodicity of the Bernoulli $1 / 2,1 / 2$ measure for the Pascal adic.
(Previous proofs for the Pascal were given by Hajian-Ito-Kakutani (1972), and Vershik.)

Collision property

Proposition

For $\eta \times \eta$-almost every $(x, y) \in X \times X$, there are infinitely many n such that the cylinders $I_{n}(x)$ and $I_{n}(y)$ end in the same vertex of the Euler graph.

Collision property

Proposition

For $\eta \times \eta$-almost every $(x, y) \in X \times X$, there are infinitely many n such that the cylinders $I_{n}(x)$ and $I_{n}(y)$ end in the same vertex of the Euler graph.

Lemmas for the Proposition

Lemma

On $(X \times X, \eta \times \eta)$ let $D_{n}\left(x, x^{\prime}\right)=\left|k_{n}(x)-k_{n}\left(x^{\prime}\right)\right|$. Let $\mathcal{F}_{n}=\mathcal{B}\left(\left(x_{1}, x_{1}^{\prime}\right), \ldots,\left(x_{n}, x_{n}^{\prime}\right)\right)$ denote the σ-algebra generated by $\left(x_{1}, x_{1}^{\prime}\right),\left(x_{2}, x_{2}^{\prime}\right), \ldots,\left(x_{n}, x_{n}^{\prime}\right)$. Then $\left(D_{n}\right)$ is a supermartingale with respect to $\left(\mathcal{F}_{n}\right)$.

Lemmas for the Proposition

Lemma

On $(X \times X, \eta \times \eta)$ let $D_{n}\left(x, x^{\prime}\right)=\left|k_{n}(x)-k_{n}\left(x^{\prime}\right)\right|$. Let $\mathcal{F}_{n}=\mathcal{B}\left(\left(x_{1}, x_{1}^{\prime}\right), \ldots,\left(x_{n}, x_{n}^{\prime}\right)\right)$ denote the σ-algebra generated by $\left(x_{1}, x_{1}^{\prime}\right),\left(x_{2}, x_{2}^{\prime}\right), \ldots,\left(x_{n}, x_{n}^{\prime}\right)$. Then $\left(D_{n}\right)$ is a supermartingale with respect to $\left(\mathcal{F}_{n}\right)$.

The proof is by direct computation, using the weights on the edges that determine the measure η.

This lemma expresses the central tendency of the infinite paths in the Euler graph: paths close to the edge tend toward the center with greater probability the closer they are to the edge.

Convergence of probabilities

Lemma

$$
\frac{k_{n}(x)}{n} \rightarrow \frac{1}{2} \text { in measure. }
$$

Convergence of probabilities

Lemma

$$
\frac{k_{n}(x)}{n} \rightarrow \frac{1}{2} \text { in measure. }
$$

Proof: Direct computation of the variance, Chebyshev's Inequality.

Proof of the Theorem

Suppose that $A \subseteq X$ is measurable and T-invariant and that $0<\eta(A) \eta\left(A^{c}\right)<1$.

Pick an $n_{0}=n_{0}(x, y)$ such that for all $n \geq n_{0}$, and $\eta \times \eta$-a.e. $(x, y) \in A \times A^{c}$,

$$
\begin{equation*}
\frac{\eta\left(A \cap I_{n}(x)\right)}{\eta\left(I_{n}(x)\right)}>\frac{1}{2} \text { and } \frac{\eta\left(A^{c} \cap I_{n}(y)\right)}{\eta\left(I_{n}(y)\right)}>\frac{1}{2} . \tag{2}
\end{equation*}
$$

Then, by Proposition 2, we can choose $n \geq n_{0}$ such that $I_{n}(x)$ and $I_{n}(y)$ end in the same vertex and hence there is $j \in \mathbb{Z}$ such that $T^{j}\left(I_{n}(x)\right)=I_{n}(y)$.
Since A is T-invariant, this contradicts (2)—most of $I_{n}(x)$ is made up of A, while most of $I_{n}(y)$ is made up of A^{c}.

Then we must have $\eta(A)=0$ or $\eta(A)=1$.

Uniqueness

Theorem (Bailey-KP)
The symmetric measure η is the only fully supported ergodic invariant Borel probability measure for the Euler adic transformation.

Uniqueness

Theorem (Bailey-KP)
The symmetric measure η is the only fully supported ergodic invariant Borel probability measure for the Euler adic transformation.

Interpretation: If any two permutations of the same length with the same number of rises are equally likely, and every permutation has positive probability, then all permutations of a given length are equally likely.

Adic Systems and Symbolic Dynamics

LThe Eulerian Adic
-Second proof: Unique fully supported ergodicity from coding by permutations

Counting paths

The Euler graph and random permutations

Path leaving (n, k) to the left $\sim \operatorname{inserting} n+2$ at a place where it creates a new fall.

The Euler graph and random permutations

Path leaving (n, k) to the left \sim inserting $n+2$ at a place where it creates a new fall.

$$
A(n+1, k)=(n-k+2) A(n, k-1)+(k+1) A(n, k)
$$

The Euler graph and random permutations

Path leaving (n, k) to the left $\sim \operatorname{inserting} n+2$ at a place where it creates a new fall.

$$
A(n+1, k)=(n-k+2) A(n, k-1)+(k+1) A(n, k) .
$$

The space X of infinite paths \sim the set of all linear orderings of \mathbb{N}.

Adic Systems and Symbolic Dynamics

L The Eulerian Adic
-Second proof: Unique fully supported ergodicity from coding by permutations

Cylinders and permutations

Cylinders

Let μ be an ergodic invariant measure for the Euler adic.

Cylinders

Let μ be an ergodic invariant measure for the Euler adic.

Consider cylinder sets C_{1} and C_{2} of the same length, n_{0}.

Cylinders

Let μ be an ergodic invariant measure for the Euler adic.

Consider cylinder sets C_{1} and C_{2} of the same length, n_{0}.

They correspond to permutations $\pi\left(C_{1}\right)$ and $\pi\left(C_{2}\right)$ of $1,2, \ldots, n_{0}+1$, and to paths of length n_{0} down from the root.

Dimensions

$\operatorname{dim}\left(x_{n}\right)=$ the number of paths from the root to the vertex $\left(n, k_{n}(x)\right)$ $\operatorname{dim}\left(C_{1}, x_{n}\right)=$ the number of paths from the bottom end of C_{1} to $\left(n, k_{n}(x)\right)$

Dimensions

$\operatorname{dim}\left(x_{n}\right)=$ the number of paths from the root to the vertex $\left(n, k_{n}(x)\right)$ $\operatorname{dim}\left(C_{1}, x_{n}\right)=$ the number of paths from the bottom end of C_{1} to $\left(n, k_{n}(x)\right)$
We know that

$$
\frac{\operatorname{dim}\left(C_{1}, x_{n}\right)}{\operatorname{dim}\left(x_{n}\right)} \rightarrow E_{\mu}\left(\chi_{C_{1}} \mid \mathcal{I}\right)(x)=\mu\left(C_{1}\right) \quad \text { a.e., }
$$

and similarly for C_{2}.

Dimensions

$\operatorname{dim}\left(x_{n}\right)=$ the number of paths from the root to the vertex $\left(n, k_{n}(x)\right)$ $\operatorname{dim}\left(C_{1}, x_{n}\right)=$ the number of paths from the bottom end of C_{1} to $\left(n, k_{n}(x)\right)$
We know that

$$
\frac{\operatorname{dim}\left(C_{1}, x_{n}\right)}{\operatorname{dim}\left(x_{n}\right)} \rightarrow E_{\mu}\left(\chi_{C_{1}} \mid \mathcal{I}\right)(x)=\mu\left(C_{1}\right) \quad \text { a.e., }
$$

and similarly for C_{2}.
So we aim to show that

$$
\frac{\operatorname{dim}\left(C_{1}, x_{n}\right)}{\operatorname{dim}\left(C_{2}, x_{n}\right)} \rightarrow 1 \quad \text { a.e.. }
$$

Dimensions

$\operatorname{dim}\left(x_{n}\right)=$ the number of paths from the root to the vertex $\left(n, k_{n}(x)\right)$ $\operatorname{dim}\left(C_{1}, x_{n}\right)=$ the number of paths from the bottom end of C_{1} to $\left(n, k_{n}(x)\right)$
We know that

$$
\frac{\operatorname{dim}\left(C_{1}, x_{n}\right)}{\operatorname{dim}\left(x_{n}\right)} \rightarrow E_{\mu}\left(\chi_{C_{1}} \mid \mathcal{I}\right)(x)=\mu\left(C_{1}\right) \quad \text { a.e., }
$$

and similarly for C_{2}.
So we aim to show that

$$
\frac{\operatorname{dim}\left(C_{1}, x_{n}\right)}{\operatorname{dim}\left(C_{2}, x_{n}\right)} \rightarrow 1 \quad \text { a.e.. }
$$

This does involve asymptotics of the Eulerian numbers $A(n, k)$, but we claim we can get the result without knowing too much.

Permutations

- Each path from the end of C_{1} to (n, k) corresponds to a permutation of $1, \ldots, n+1$ in which $1, \ldots, n_{0}+1$ appear in the order $\pi\left(C_{1}\right)$.
- We obtain each such permutation by starting with a permutation of $n_{0}+2, \ldots, n+1$ and inserting $1, \ldots, n_{0}+1$ in the order prescribed by $\pi\left(C_{1}\right)$.
- And we are supposed to end up with a permutation of $1, \ldots, n+1$ which has exactly k rises and $n-k$ falls.
- If no two elements of $1, \ldots, n_{0}+1$ are placed consecutively, we have $n_{0}+1$ choices for where to put them (in a rise, in a fall, at the beginning or end).
- And the effect on the number of rises and falls is the same for $\pi\left(C_{1}\right)$ as for $\pi\left(C_{2}\right)$ —putting any $i \leq n_{0}+1$ into a fall or at the beginning produces a new rise, putting it into a rise or at the end produces a new fall (and the number of rises does not change).

Asymptotics

- In counting $\operatorname{dim}\left(C_{1}, x_{n}\right)$ we see Eulerian numbers $A\left(n-\left(n_{0}+1\right), j\right)$, with coefficients of various degrees in k and $n-k$.
- For example, if all of $1, \ldots, n_{0}+1$ are to be inserted into rises or at the end, there are
$C\left(k+1, n_{0}+1\right)=(k+1) k \cdots\left(k-n_{0}+1\right) /\left(n_{0}+1\right)$! choices for the set of places, and the number of rises will stay fixed at k.
- Similarly, if we insist that a certain number of $1, \ldots, n_{0}+1$ be placed into separate rises or at the end, and the rest into separate falls or at the beginning, we again find a product of $n_{0}+1$ factors on the order of k or $n-k$.
- But if we allow some of $1, \ldots, n_{0}+1$ to be placed adjacently, we will obtain a lower degree product.
- Thus the coefficients of each $A\left(n-\left(n_{0}+1\right), j\right)$ of highest degree (in k and $n-k$) are the same for $\pi\left(C_{1}\right)$ and $\pi\left(C_{2}\right)$, and so $\operatorname{dim}\left(C_{1}, x_{n}\right) / \operatorname{dim}\left(C_{2}, x_{n}\right) \rightarrow 1, \quad$ provided that $k, n-k \rightarrow \infty$.

Comparing $\mu\left(C_{1}\right)$ and $\mu\left(C_{2}\right)$

- We will compare $\frac{\mu\left(C_{1}\right)}{\mu\left(C_{2}\right)}$ when C_{1} and C_{2} are of the same length, n_{0}.
- $\operatorname{dim}\left(C_{1},(n, k)\right)$ is dominated by permutations in which $\pi\left(C_{1}\right)$ is "broken up"
- $\pi\left(C_{1}\right)$ is "broken up" in 41752638
- This term is the same for cylinders of the same length.
- Hence $\frac{\mu\left(C_{1}\right)}{\mu\left(C_{2}\right)}=1$, and μ must be the symmetric measure. \diamond
- 41752638 and 43751628 have the same number of rises.

Conclusion of the proof that η is ergodic

Suppose that in the preceding we assume not that μ is ergodic, just that $k, n-k \rightarrow \infty$ with probability 1 .

Conclusion of the proof that η is ergodic

Suppose that in the preceding we assume not that μ is ergodic, just that $k, n-k \rightarrow \infty$ with probability 1 .
We have shown that then for any two cylinders C_{1}, C_{2} of the same length,

$$
E_{\mu}\left(\chi_{C_{1}} \mid \mathcal{I}\right)(x)=E_{\mu}\left(\chi_{C_{2}} \mid \mathcal{I}\right)(x) \quad \text { a.e., }
$$

and integrating gives $\mu\left(C_{1}\right)=\mu\left(C_{2}\right)$,

Conclusion of the proof that η is ergodic

Suppose that in the preceding we assume not that μ is ergodic, just that $k, n-k \rightarrow \infty$ with probability 1 .
We have shown that then for any two cylinders C_{1}, C_{2} of the same length,

$$
E_{\mu}\left(\chi_{C_{1}} \mid \mathcal{I}\right)(x)=E_{\mu}\left(\chi_{C_{2}} \mid \mathcal{I}\right)(x) \quad \text { a.e., }
$$

and integrating gives $\mu\left(C_{1}\right)=\mu\left(C_{2}\right)$, so that $\mu=\eta$.

Conclusion of the proof that η is ergodic

Suppose that in the preceding we assume not that μ is ergodic, just that $k, n-k \rightarrow \infty$ with probability 1 .
We have shown that then for any two cylinders C_{1}, C_{2} of the same length,

$$
E_{\mu}\left(\chi_{C_{1}} \mid \mathcal{I}\right)(x)=E_{\mu}\left(\chi_{C_{2}} \mid \mathcal{I}\right)(x) \quad \text { a.e. },
$$

and integrating gives $\mu\left(C_{1}\right)=\mu\left(C_{2}\right)$, so that $\mu=\eta$.

We can show that there must be an ergodic measure which has k and $n-k$ unbounded a.e., and then it will follow that η is ergodic.

Conclusion of the proof that η is ergodic

Suppose that in the preceding we assume not that μ is ergodic, just that $k, n-k \rightarrow \infty$ with probability 1 .
We have shown that then for any two cylinders C_{1}, C_{2} of the same length,

$$
E_{\mu}\left(\chi_{C_{1}} \mid \mathcal{I}\right)(x)=E_{\mu}\left(\chi_{C_{2}} \mid \mathcal{I}\right)(x) \quad \text { a.e. },
$$

and integrating gives $\mu\left(C_{1}\right)=\mu\left(C_{2}\right)$, so that $\mu=\eta$.

We can show that there must be an ergodic measure which has k and $n-k$ unbounded a.e., and then it will follow that η is ergodic. This constitutes a proof by the asymptotics of the Eulerian numbers, different from the random-walk and supermartingale one.

A formula generalizing the one for Eulerian numbers.

Theorem (KP-A. Varchenko)
For $p \geq 0, q \geq 1$, and $i, j \geq 0$, let $B_{p, q}(j+i, i)$ denote the number of paths in the Euler graph from the vertex $(p+q, q)$ to the vertex $(p+j+q+i, q+i)$. Then for all p, q, i, j we have

$$
B_{p, q}(j+i, i)=\sum_{t=0}^{i}(-1)^{i-t}\binom{p+q+t}{t}\binom{p+q+j+i+1}{i-t}(q+t)^{j+i}
$$

A formula generalizing the one for Eulerian numbers.

Theorem (KP-A. Varchenko)
For $p \geq 0, q \geq 1$, and $i, j \geq 0$, let $B_{p, q}(j+i, i)$ denote the number of paths in the Euler graph from the vertex $(p+q, q)$ to the vertex $(p+j+q+i, q+i)$. Then for all p, q, i, j we have
$B_{p, q}(j+i, i)=\sum_{t=0}^{i}(-1)^{i-t}\binom{p+q+t}{t}\binom{p+q+j+i+1}{i-t}(q+t)^{j+i}$.

First we proved this (in a simple case) by using Abel's Identity:

A formula generalizing the one for Eulerian numbers.

Theorem (KP-A. Varchenko)
For $p \geq 0, q \geq 1$, and $i, j \geq 0$, let $B_{p, q}(j+i, i)$ denote the number of paths in the Euler graph from the vertex $(p+q, q)$ to the vertex $(p+j+q+i, q+i)$. Then for all p, q, i, j we have
$B_{p, q}(j+i, i)=\sum_{t=0}^{i}(-1)^{i-t}\binom{p+q+t}{t}\binom{p+q+j+i+1}{i-t}(q+t)^{j+i}$.

First we proved this (in a simple case) by using Abel's Identity:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x(x-k z)^{k-1}(y+k z)^{n-k} \quad \text { for all } x, y, z .
$$

A formula generalizing the one for Eulerian numbers.

Theorem (KP-A. Varchenko)
For $p \geq 0, q \geq 1$, and $i, j \geq 0$, let $B_{p, q}(j+i, i)$ denote the number of paths in the Euler graph from the vertex $(p+q, q)$ to the vertex $(p+j+q+i, q+i)$. Then for all p, q, i, j we have

$$
B_{p, q}(j+i, i)=\sum_{t=0}^{i}(-1)^{i-t}\binom{p+q+t}{t}\binom{p+q+j+i+1}{i-t}(q+t)^{j+i}
$$

First we proved this (in a simple case) by using Abel's Identity:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x(x-k z)^{k-1}(y+k z)^{n-k} \quad \text { for all } x, y, z .
$$

Then we got a much shorter argument, satisfying boundary conditions for a recurrence equation by checking equality of two degree i polynomials in p at $i+1$ points.

Second key: a one-to-one correspondence

Let P_{0} and P_{1} be two vertices at the same level n_{0} in the Euler graph.

Second key: a one-to-one correspondence

Let P_{0} and P_{1} be two vertices at the same level n_{0} in the Euler graph. From each of P_{0}, P_{1} there are $n_{0}+1$ edges out, but k_{i} to the left $i=0,1$.

Second key: a one-to-one correspondence

Let P_{0} and P_{1} be two vertices at the same level n_{0} in the Euler graph. From each of P_{0}, P_{1} there are $n_{0}+1$ edges out, but k_{i} to the left $i=0,1$.

Second key: a one-to-one correspondence

Let P_{0} and P_{1} be two vertices at the same level n_{0} in the Euler graph. From each of P_{0}, P_{1} there are $n_{0}+1$ edges out, but k_{i} to the left $i=0,1$.

If we take a path down from each P_{i} that has $k_{i}+L$ edges to the left, $n_{0}-k_{i}+1+R$ to the right, we end up at the same vertex, P,

Second key: a one-to-one correspondence

Let P_{0} and P_{1} be two vertices at the same level n_{0} in the Euler graph. From each of P_{0}, P_{1} there are $n_{0}+1$ edges out, but k_{i} to the left $i=0,1$.

If we take a path down from each P_{i} that has $k_{i}+L$ edges to the left, $n_{0}-k_{i}+1+R$ to the right, we end up at the same vertex, P, because the k coordinate of each path is then $k_{0}+\left(n_{0}-k_{0}+1\right)+R=k_{1}+\left(n_{0}-k_{1}+1\right)+R$: the offset exactly compensates for the different numbers of edges to the right.

Second key: a one-to-one correspondence

Let P_{0} and P_{1} be two vertices at the same level n_{0} in the Euler graph. From each of P_{0}, P_{1} there are $n_{0}+1$ edges out, but k_{i} to the left $i=0,1$.

If we take a path down from each P_{i} that has $k_{i}+L$ edges to the left, $n_{0}-k_{i}+1+R$ to the right, we end up at the same vertex, P, because the k coordinate of each path is then $k_{0}+\left(n_{0}-k_{0}+1\right)+R=k_{1}+\left(n_{0}-k_{1}+1\right)+R$: the offset exactly compensates for the different numbers of edges to the right. So we set up a dynamic labeling of paths below P_{0} and P_{1} that effectuates a one-to-one correspondence between such good paths.

Pairs of paths in the Euler graph.

From each vertex below each of $P_{0}, P_{1}, n_{0}+1$ paths are colored and numbered $1,2, \ldots, n_{0}+1$ from left to right.
The other vertices are numbered as falls or rises.
When a colored edge is used, we note the label, remove the color, relabel it at all vertices below as a fall or rise.
We have to show that most paths from P_{0} and P_{1} correspond by means of their labels.

Third key: A double induction

To show that the set of paths from P_{0} that fail ever to select a colored edge to the right is relatively small,

Third key: A double induction

To show that the set of paths from P_{0} that fail ever to select a colored edge to the right is relatively small, we want to show that

$$
\frac{B_{p, q}(j+i, i)}{B_{p-1, q}(j+i, i)} \rightarrow \infty \quad \text { as } i, j \rightarrow \infty
$$

Third key: A double induction

To show that the set of paths from P_{0} that fail ever to select a colored edge to the right is relatively small, we want to show that

$$
\frac{B_{p, q}(j+i, i)}{B_{p-1, q}(j+i, i)} \rightarrow \infty \quad \text { as } i, j \rightarrow \infty .
$$

(Avoiding an edge to the right equals shifting the box up one-easy for Pascal)

Third key: A double induction

To show that the set of paths from P_{0} that fail ever to select a colored edge to the right is relatively small, we want to show that

$$
\frac{B_{p, q}(j+i, i)}{B_{p-1, q}(j+i, i)} \rightarrow \infty \quad \text { as } i, j \rightarrow \infty .
$$

(Avoiding an edge to the right equals shifting the box up one-easy for Pascal)
For fixed i, from our formula the limit is $\frac{p+q+i}{p+q}$,

Third key: A double induction

To show that the set of paths from P_{0} that fail ever to select a colored edge to the right is relatively small, we want to show that

$$
\frac{B_{p, q}(j+i, i)}{B_{p-1, q}(j+i, i)} \rightarrow \infty \quad \text { as } i, j \rightarrow \infty
$$

(Avoiding an edge to the right equals shifting the box up one-easy for Pascal)
For fixed i, from our formula the limit is $\frac{p+q+i}{p+q}$, and it's a decreasing limit down each column.

Third key: A double induction

To show that the set of paths from P_{0} that fail ever to select a colored edge to the right is relatively small, we want to show that

$$
\frac{B_{p, q}(j+i, i)}{B_{p-1, q}(j+i, i)} \rightarrow \infty \quad \text { as } i, j \rightarrow \infty
$$

(Avoiding an edge to the right equals shifting the box up one-easy for Pascal)
For fixed i, from our formula the limit is $\frac{p+q+i}{p+q}$, and it's a decreasing limit down each column. But to conclude, we need for example that the ratios increase along rows.

Double induction with multiples

Let us consider four adjacent vertices in the graph,

$$
\begin{gathered}
y=(p+j+q+i, q+i), \quad Q=(p+j+q+i+1, q+i+1) \\
x=(p+j+1+q+i, q+i), \quad P=(p+j+1, q+i+1, q+i+1)
\end{gathered}
$$

Double induction with multiples

Let us consider four adjacent vertices in the graph,

$$
\begin{gathered}
y=(p+j+q+i, q+i), \quad Q=(p+j+q+i+1, q+i+1) \\
x=(p+j+1+q+i, q+i), \quad P=(p+j+1, q+i+1, q+i+1)
\end{gathered}
$$

Abbreviate $B_{p, q}(j+i, i)$ at these points by B_{y}, etc., and $B_{p-1, q}(j+i, i)$ by B_{y}^{\prime}, etc.

Double induction with multiples

Let us consider four adjacent vertices in the graph,

$$
\begin{gathered}
y=(p+j+q+i, q+i), \quad Q=(p+j+q+i+1, q+i+1) \\
x=(p+j+1+q+i, q+i), \quad P=(p+j+1, q+i+1, q+i+1)
\end{gathered}
$$

Abbreviate $B_{p, q}(j+i, i)$ at these points by B_{y}, etc., and $B_{p-1, q}(j+i, i)$ by B_{y}^{\prime}, etc.

Double induction with multiples

Let us consider four adjacent vertices in the graph,

$$
\begin{gathered}
y=(p+j+q+i, q+i), \quad Q=(p+j+q+i+1, q+i+1) \\
x=(p+j+1+q+i, q+i), \quad P=(p+j+1, q+i+1, q+i+1)
\end{gathered}
$$

Abbreviate $B_{p, q}(j+i, i)$ at these points by B_{y}, etc., and $B_{p-1, q}(j+i, i)$ by B_{y}^{\prime}, etc.

Proposition

For all $i, j \geq 0$, we
have

$$
\frac{B_{Q}}{B_{Q}^{\prime}} \geq \frac{p+j+1}{p+j} \frac{B_{y}}{B_{y}^{\prime}} \quad \text { and } \quad \frac{B_{x}}{B_{x}^{\prime}} \leq \frac{B_{y}}{B_{y}^{\prime}} .
$$

Asymmetric reinforcement

- Consider now a random walk on the graph G_{n+1} consisting of $n+1$ loops at a single vertex, with a different kind of opposite reinforcement.

Asymmetric reinforcement

- Consider now a random walk on the graph G_{n+1} consisting of $n+1$ loops at a single vertex, with a different kind of opposite reinforcement.
- When the walker takes a step in the direction of e_{n+1}, the numbers of edges in all the other directions (e_{j} for $j=1, \ldots, n$) are incremented by 1 ;

Asymmetric reinforcement

- Consider now a random walk on the graph G_{n+1} consisting of $n+1$ loops at a single vertex, with a different kind of opposite reinforcement.
- When the walker takes a step in the direction of e_{n+1}, the numbers of edges in all the other directions (e_{j} for $j=1, \ldots, n$) are incremented by 1 ;
- but when the walker takes a step in the direction of e_{j} for some $j=1, \ldots, n$, only the number of edges in the direction of e_{n+1} is incremented by 1 .

Asymmetric reinforcement

- Consider now a random walk on the graph G_{n+1} consisting of $n+1$ loops at a single vertex, with a different kind of opposite reinforcement.
- When the walker takes a step in the direction of e_{n+1}, the numbers of edges in all the other directions (e_{j} for $j=1, \ldots, n$) are incremented by 1 ;
- but when the walker takes a step in the direction of e_{j} for some $j=1, \ldots, n$, only the number of edges in the direction of e_{n+1} is incremented by 1 .
- Studying the asymptotic growth rate of path counts in the resulting adic diagram leads us to an identity involving two special kinds of polynomials.

Asymmetric reinforcement

- Consider now a random walk on the graph G_{n+1} consisting of $n+1$ loops at a single vertex, with a different kind of opposite reinforcement.
- When the walker takes a step in the direction of e_{n+1}, the numbers of edges in all the other directions (e_{j} for $j=1, \ldots, n$) are incremented by 1 ;
- but when the walker takes a step in the direction of e_{j} for some $j=1, \ldots, n$, only the number of edges in the direction of e_{n+1} is incremented by 1 .
- Studying the asymptotic growth rate of path counts in the resulting adic diagram leads us to an identity involving two special kinds of polynomials.
- This in turn has as a corollary an identity relating Stirling numbers of the first and second kinds:

An identity involving Stirling numbers

For $1 \leq k \leq n, 0 \leq r \leq k$,

$$
\begin{gathered}
\binom{r+n-k-1}{r} s_{1}(n, r+n-k)= \\
\sum_{m=0}^{k}\binom{m+n-k}{m+1} \sum_{i=0}^{r}\binom{i+n-k+m-1}{i} \frac{(-1)^{m+r-i}}{n^{r-i+1}}(r-i+1)!\times \\
s_{2}(m+1, r-i+1) s_{1}(n, i+n-k+m)
\end{gathered}
$$

Hitting densities (boundaries)

- Ergodic decomposition of the walk measure is related to asymptotic edge traversal frequencies.
- Sometimes this has a density on the simplex-e.g., for positive reinforcement (Coppersmith-Diaconis, Keane-Rolles).
- Other reinforcement schemes lead to other interesting examples, such as the Stirling system that comes from always reinforcing to the left (Salama).
- More complicated graphs
- Shift-of-finite-type restrictions
- Applications back to random walks?

Edge traversal densities and ergodic decomposition

- Adic-invariant walk measures are exchangeable, hence partially exchangeable (as are all positively reinforced walk measures).

Edge traversal densities and ergodic decomposition

- Adic-invariant walk measures are exchangeable, hence partially exchangeable (as are all positively reinforced walk measures).
- So by Diaconis-Freedman, they are mixtures of Markovs, hence edge-traversal frequencies exist.

Edge traversal densities and ergodic decomposition

- Adic-invariant walk measures are exchangeable, hence partially exchangeable (as are all positively reinforced walk measures).
- So by Diaconis-Freedman, they are mixtures of Markovs, hence edge-traversal frequencies exist.
- Coppersmith-Diaconis said, and Keane-Rolles proved, they are absolutely continuous with respect to Lebesgue measure on the simplex

Edge traversal densities and ergodic decomposition

- Adic-invariant walk measures are exchangeable, hence partially exchangeable (as are all positively reinforced walk measures).
- So by Diaconis-Freedman, they are mixtures of Markovs, hence edge-traversal frequencies exist.
- Coppersmith-Diaconis said, and Keane-Rolles proved, they are absolutely continuous with respect to Lebesgue measure on the simplex
- and gave a formula for the density.

Edge traversal densities and ergodic decomposition

- Adic-invariant walk measures are exchangeable, hence partially exchangeable (as are all positively reinforced walk measures).
- So by Diaconis-Freedman, they are mixtures of Markovs, hence edge-traversal frequencies exist.
- Coppersmith-Diaconis said, and Keane-Rolles proved, they are absolutely continuous with respect to Lebesgue measure on the simplex
- and gave a formula for the density.
- We can interpret this formula in terms of the ergodic decomposition of the walk measure, when it is adic-invariant.

Density computation for $s,(a, 0),(0, a)$

$$
\mathcal{E}=\left\{\mu_{\alpha}: 0 \leq \alpha \leq 1\right\}
$$

Density computation for $s,(a, 0),(0, a)$

$$
\mathcal{E}=\left\{\mu_{\alpha}: 0 \leq \alpha \leq 1\right\}
$$

$$
\begin{gathered}
\mu_{\alpha}(\text { any path to }(n, k))=\alpha^{k}(1-\alpha)^{n-k} \\
w(n, k)=\{s(a+s) \ldots[(n-k-1) a+s] \cdot s(a+s) \ldots[(k-1) a+s]\}^{-1} \\
=s g_{a, s}(n-k) \cdot g_{a, s}(k)
\end{gathered}
$$

Density computation for $s,(a, 0),(0, a)$

$$
\mathcal{E}=\left\{\mu_{\alpha}: 0 \leq \alpha \leq 1\right\}
$$

$$
\begin{gathered}
\mu_{\alpha}(\text { any path to }(n, k))=\alpha^{k}(1-\alpha)^{n-k}, \\
w(n, k)=\{s(a+s) \ldots[(n-k-1) a+s] \cdot s(a+s) \ldots[(k-1) a+s]\}^{-1} \\
=s g_{a, s}(n-k) \cdot g_{a, s}(k) .
\end{gathered}
$$

$\eta($ any path to $(n, k))=\int_{0}^{1} f_{a, s}(\alpha) \mu_{\alpha}$ (any path to $\left.(n, k)\right) d \alpha$

Density computation for $s,(a, 0),(0, a)$

$$
\mathcal{E}=\left\{\mu_{\alpha}: 0 \leq \alpha \leq 1\right\}
$$

$$
\begin{gathered}
\mu_{\alpha}(\text { any path to }(n, k))=\alpha^{k}(1-\alpha)^{n-k} \\
w(n, k)=\{s(a+s) \ldots[(n-k-1) a+s] \cdot s(a+s) \ldots[(k-1) a+s]\}^{-1} \\
=s g_{a, s}(n-k) \cdot g_{a, s}(k)
\end{gathered}
$$

$$
\eta(\text { any path to }(n, k))=\int_{0}^{1} f_{a, s}(\alpha) \mu_{\alpha}(\text { any path to }(n, k)) d \alpha
$$

Use approximate identity (via Euler's beta integral)

$$
p_{n, k}(\alpha)=(n+1) C(n, k) \alpha^{k}(1-\alpha)^{n-k}
$$

(peaks at α_{0} as $k / n \rightarrow \alpha_{0}$)
to get at $f_{a, s}$.

Integral formula for the density

Since $\eta($ any path to $(n, k))=1 /\left(2 s g_{a, 2 s}(n)\right)$,

Integral formula for the density

Since $\eta($ any path to $(n, k))=1 /\left(2 s g_{a, 2 s}(n)\right)$,

$$
\begin{aligned}
(n & +1) \int_{0}^{1} f_{a, s}(\alpha) C(n, k) \alpha^{k}(1-\alpha)^{n-k} d \alpha \\
& =(n+1) C(n, k) \frac{\eta(\text { any path to }(n, k))}{w(n, k)} \\
& =(n+1) C(n, k) \frac{2 s g_{a, 2 s}(n)}{s g_{a, s}(n-k) s g_{a, s}(k)}
\end{aligned}
$$

Integral formula for the density

Since $\eta($ any path to $(n, k))=1 /\left(2 s g_{a, 2 s}(n)\right)$,

$$
\begin{aligned}
(n & +1) \int_{0}^{1} f_{a, s}(\alpha) C(n, k) \alpha^{k}(1-\alpha)^{n-k} d \alpha \\
& =(n+1) C(n, k) \frac{\eta(\text { any path to }(n, k))}{w(n, k)} \\
& =(n+1) C(n, k) \frac{2 s g_{a, 2 s}(n)}{s g_{a, s}(n-k) s g_{a, s}(k)} .
\end{aligned}
$$

Apply Euler-Maclaurin summation to the logarithms of the products on the right

Integral formula for the density

Since $\eta($ any path to $(n, k))=1 /\left(2 s g_{a, 2 s}(n)\right)$,

$$
\begin{aligned}
(n & +1) \int_{0}^{1} f_{a, s}(\alpha) C(n, k) \alpha^{k}(1-\alpha)^{n-k} d \alpha \\
& =(n+1) C(n, k) \frac{\eta(\text { any path to }(n, k))}{w(n, k)} \\
& =(n+1) C(n, k) \frac{2 s g_{a, 2 s}(n)}{s g_{a, s}(n-k) s g_{a, s}(k)} .
\end{aligned}
$$

Apply Euler-Maclaurin summation to the logarithms of the products on the right
and take the limit as $n \rightarrow \infty, k / n \rightarrow \alpha$.

Formula for the density when $v_{L}=(a, 0), v_{R}=(0, a)$

$$
f_{a, s}(\alpha)=\frac{s}{\sqrt{\pi}} e^{a / 8-c_{a, s}} 2^{2 s / a-1} \sqrt{\frac{1}{s \alpha(1-\alpha) a}}[\alpha(1-\alpha)]^{s / a-1 / 2}
$$

Formula for the density when $v_{L}=(a, 0), v_{R}=(0, a)$

$$
\begin{aligned}
f_{a, s}(\alpha)= & \frac{s}{\sqrt{\pi}} e^{a / 8-c_{a, s}} 2^{2 s / a-1} \sqrt{\frac{1}{s \alpha(1-\alpha) a}}[\alpha(1-\alpha)]^{s / a-1 / 2} \\
& \text { Here } c_{a, s}=\frac{1}{12} \int_{0}^{\infty} \frac{a^{2}}{(a t+s)^{2}}(t-\lfloor t\rfloor) d t
\end{aligned}
$$

Formula for the density when $v_{L}=(a, 0), v_{R}=(0, a)$

$$
\begin{aligned}
f_{a, s}(\alpha)= & \frac{s}{\sqrt{\pi}} e^{a / 8-c_{a, s}} 2^{2 s / a-1} \sqrt{\frac{1}{s \alpha(1-\alpha) a}}[\alpha(1-\alpha)]^{s / a-1 / 2} \\
& \text { Here } c_{a, s}=\frac{1}{12} \int_{0}^{\infty} \frac{a^{2}}{(a t+s)^{2}}(t-\lfloor t\rfloor) d t
\end{aligned}
$$

For $s=1, a=1$ (reverse Euler), $f_{a, s}(\alpha) \equiv 1$.

Formula for the density when $v_{L}=(a, 0), v_{R}=(0, a)$

$$
\begin{aligned}
f_{a, s}(\alpha)= & \frac{s}{\sqrt{\pi}} e^{a / 8-c_{a, s}} 2^{2 s / a-1} \sqrt{\frac{1}{s \alpha(1-\alpha) a}}[\alpha(1-\alpha)]^{s / a-1 / 2} \\
& \text { Here } c_{a, s}=\frac{1}{12} \int_{0}^{\infty} \frac{a^{2}}{(a t+s)^{2}}(t-\lfloor t\rfloor) d t
\end{aligned}
$$

For $s=1, a=1$ (reverse Euler), $f_{a, s}(\alpha) \equiv 1$.
For $s=1, a=2$,

$$
f_{a, s}(\alpha)=\frac{1}{\pi \sqrt{\alpha(1-\alpha)}}
$$

Formula for the density when $v_{L}=(a, 0), v_{R}=(0, a)$

$$
\begin{gathered}
f_{a, s}(\alpha)=\frac{s}{\sqrt{\pi}} e^{a / 8-c_{a, s}} 2^{2 s / a-1} \sqrt{\frac{1}{s \alpha(1-\alpha) a}}[\alpha(1-\alpha)]^{s / a-1 / 2} \\
\quad \text { Here } c_{a, s}=\frac{1}{12} \int_{0}^{\infty} \frac{a^{2}}{(a t+s)^{2}}(t-\lfloor t\rfloor) d t
\end{gathered}
$$

For $s=1, a=1$ (reverse Euler), $f_{a, s}(\alpha) \equiv 1$.
For $s=1, a=2$,

$$
f_{a, s}(\alpha)=\frac{1}{\pi \sqrt{\alpha(1-\alpha)}}
$$

Similarly for d loops.

Stationary processes

- (X, $\mathcal{B}, \mu, T)$ ergodic measure-preserving system (usually invertible)

Stationary processes

- (X, $\mathcal{B}, \mu, T)$ ergodic measure-preserving system (usually invertible)
- $\alpha=\left\{a_{1}, \ldots, a_{r}\right\}$ finite measurable partition

Stationary processes

- (X, $\mathcal{B}, \mu, T)$ ergodic measure-preserving system (usually invertible)
- $\alpha=\left\{a_{1}, \ldots, a_{r}\right\}$ finite measurable partition
- The process ($X, \mathcal{B}, \mu, T, \alpha$) corresponds to a shift-invariant measure (also call it μ) on $\Omega=\alpha^{\mathbb{Z}}$.

Stationary processes

- (X, $\mathcal{B}, \mu, T)$ ergodic measure-preserving system (usually invertible)
- $\alpha=\left\{a_{1}, \ldots, a_{r}\right\}$ finite measurable partition
- The process ($X, \mathcal{B}, \mu, T, \alpha$) corresponds to a shift-invariant measure (also call it μ) on $\Omega=\alpha^{\mathbb{Z}}$.
- The time- 0 partition of Ω is a generator for the m.p. system (Ω, μ, σ).

Tail fields

- The future tail field is $\mathcal{T}^{+}=\bigcap_{n \geq 0} \mathcal{B}\left(\omega_{n}, \omega_{n+1}, \ldots\right)$.

Tail fields

- The future tail field is $\mathcal{T}^{+}=\bigcap_{n \geq 0} \mathcal{B}\left(\omega_{n}, \omega_{n+1}, \ldots\right)$.
- $\ln X, \mathcal{T}^{+}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left(T^{-n} \alpha \vee T^{-n-1} \alpha \vee \ldots\right)$.

Tail fields

- The future tail field is $\mathcal{T}^{+}=\bigcap_{n \geq 0} \mathcal{B}\left(\omega_{n}, \omega_{n+1}, \ldots\right)$.
- $\operatorname{In} X, \mathcal{T}^{+}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left(T^{-n} \alpha \vee T^{-n-1} \alpha \vee \ldots\right)$.
- It is the intersection of the algebras generated by all the cylinder sets $\left\{T^{n} x \in a_{i_{n}}, \ldots, T^{n+j} x \in a_{i_{n+j}}: n, j \geq 0\right\}$.

Tail fields

- The future tail field is $\mathcal{T}^{+}=\bigcap_{n \geq 0} \mathcal{B}\left(\omega_{n}, \omega_{n+1}, \ldots\right)$.
- $\operatorname{In} X, \mathcal{T}^{+}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left(T^{-n} \alpha \vee T^{-n-1} \alpha \vee \ldots\right)$.
- It is the intersection of the algebras generated by all the cylinder sets $\left\{T^{n} x \in a_{i_{n}}, \ldots, T^{n+j} x \in a_{i_{n+j}}: n, j \geq 0\right\}$.
- When α is a generator, $\mathcal{T}^{+}(\alpha)$ is the Pinsker algebra of (X, \mathcal{B}, μ, T).

The K property

- A system (X, \mathcal{B}, μ, T) is K (has the Kolmogorov property) if there is a generator α such that $\mathcal{T}^{+}(\alpha)$ is trivial, i.e. consists only of sets of measure 0 or 1 .

The K property

- A system (X, \mathcal{B}, μ, T) is K (has the Kolmogorov property) if there is a generator α such that $\mathcal{T}^{+}(\alpha)$ is trivial, i.e. consists only of sets of measure 0 or 1 .
- We also define $\mathcal{T}^{-}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left(T^{n} \alpha \vee T^{n+1} \alpha \vee \ldots\right)$, $\mathcal{T}^{ \pm}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left\{x_{i}:|i| \geq n\right\}$.

The K property

- A system (X, \mathcal{B}, μ, T) is K (has the Kolmogorov property) if there is a generator α such that $\mathcal{T}^{+}(\alpha)$ is trivial, i.e. consists only of sets of measure 0 or 1 .
- We also define $\mathcal{T}^{-}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left(T^{n} \alpha \vee T^{n+1} \alpha \vee \ldots\right)$, $\mathcal{T}^{ \pm}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left\{x_{i}:|i| \geq n\right\}$.
- Rohlin-Sinai, 1961: (X, \mathcal{B}, μ, T) is K if and only if it has completely positive entropy, i.e. every nontrivial factor has positive entropy.

The K property

- A system (X, \mathcal{B}, μ, T) is K (has the Kolmogorov property) if there is a generator α such that $\mathcal{T}^{+}(\alpha)$ is trivial, i.e. consists only of sets of measure 0 or 1 .
- We also define $\mathcal{T}^{-}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left(T^{n} \alpha \vee T^{n+1} \alpha \vee \ldots\right)$, $\mathcal{T}^{ \pm}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left\{x_{i}:|i| \geq n\right\}$.
- Rohlin-Sinai, 1961: (X, \mathcal{B}, μ, T) is K if and only if it has completely positive entropy, i.e. every nontrivial factor has positive entropy.
- Therefore, for any partition $\alpha, \mathcal{T}^{-}(\alpha)$ is trivial if and only if $\mathcal{T}^{+}(\alpha)$ is trivial (because for any $\beta \leq \alpha, h_{\mu}(T, \beta)=h_{\mu}\left(T^{-1}, \beta\right)$).

Changing generators

- Ornstein-Weiss, 1975: Given a partition α, there is a refinement $\beta \geq \alpha$ such that $\mathcal{T}^{ \pm}(\beta)=\mathcal{B}$.

Changing generators

- Ornstein-Weiss, 1975: Given a partition α, there is a refinement $\beta \geq \alpha$ such that $\mathcal{T}^{ \pm}(\beta)=\mathcal{B}$.
- Thus even if the process (α, T) is K, so that no information about the present remains in either the remote future or in the remote past,

Changing generators

- Ornstein-Weiss, 1975: Given a partition α, there is a refinement $\beta \geq \alpha$ such that $\mathcal{T}^{ \pm}(\beta)=\mathcal{B}$.
- Thus even if the process (α, T) is K, so that no information about the present remains in either the remote future or in the remote past,
- it can be recoded to an isomorphic process that is 2 -sided deterministic: if the remote past and remote future can communicate and cooperate, they can determine what is going on near the present.

Changing generators

- Ornstein-Weiss, 1975: Given a partition α, there is a refinement $\beta \geq \alpha$ such that $\mathcal{T}^{ \pm}(\beta)=\mathcal{B}$.
- Thus even if the process (α, T) is K, so that no information about the present remains in either the remote future or in the remote past,
- it can be recoded to an isomorphic process that is 2-sided deterministic: if the remote past and remote future can communicate and cooperate, they can determine what is going on near the present.

Fine tail fields

- The ordinary tail fields are the fields of saturated sets for the Borel equivalence relation under finite coordinate changes.

Fine tail fields

- The ordinary tail fields are the fields of saturated sets for the Borel equivalence relation under finite coordinate changes.
- Now consider some finer tail fields that allow for saving a limited amount of information as the present recedes into the distance.

Fine tail fields

- The ordinary tail fields are the fields of saturated sets for the Borel equivalence relation under finite coordinate changes.
- Now consider some finer tail fields that allow for saving a limited amount of information as the present recedes into the distance.
- $G=$ a group, probably \mathbb{Z}^{r}. Assume discrete, countable, maybe abelian.

Fine tail fields

- The ordinary tail fields are the fields of saturated sets for the Borel equivalence relation under finite coordinate changes.
- Now consider some finer tail fields that allow for saving a limited amount of information as the present recedes into the distance.
- $G=$ a group, probably \mathbb{Z}^{r}. Assume discrete, countable, maybe abelian.
- $\psi: \Omega \rightarrow G$, a Borel map (or continuous, or even a one-block map), also considered as a map on X

Fine tail fields

- The ordinary tail fields are the fields of saturated sets for the Borel equivalence relation under finite coordinate changes.
- Now consider some finer tail fields that allow for saving a limited amount of information as the present recedes into the distance.
- $G=$ a group, probably \mathbb{Z}^{r}. Assume discrete, countable, maybe abelian.
- $\psi: \Omega \rightarrow G$, a Borel map (or continuous, or even a one-block map), also considered as a map on X
- $\psi_{m}^{n}(x)=\psi\left(T^{m} x\right) \cdots \psi\left(T^{n} x\right)$, in abelian case $\sum_{k=m}^{n} \psi\left(T^{k} x\right)$

Fine tail fields 2

- E.g., if $\psi: \Omega \rightarrow \mathbb{Z}^{d}$ is defined by $\psi(\omega)=e_{i} \in \mathbb{Z}^{d}$ if $\omega_{0}=a_{i}$, then $\psi_{0}^{n-1}(\omega)$ gives in each entry i the number of times that a_{i} appears in the first n entries in ω : this ψ is the symbol-counting cocycle.

Fine tail fields 2

- E.g., if $\psi: \Omega \rightarrow \mathbb{Z}^{d}$ is defined by $\psi(\omega)=e_{i} \in \mathbb{Z}^{d}$ if $\omega_{0}=a_{i}$, then $\psi_{0}^{n-1}(\omega)$ gives in each entry i the number of times that a_{i} appears in the first n entries in ω : this ψ is the symbol-counting cocycle.
- $\mathcal{F}_{\psi}^{+}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left(\psi_{0}^{n}, \psi_{0}^{n+1}, \ldots\right)$

Fine tail fields 2

- E.g., if $\psi: \Omega \rightarrow \mathbb{Z}^{d}$ is defined by $\psi(\omega)=e_{i} \in \mathbb{Z}^{d}$ if $\omega_{0}=a_{i}$, then $\psi_{0}^{n-1}(\omega)$ gives in each entry i the number of times that a_{i} appears in the first n entries in ω : this ψ is the symbol-counting cocycle.
- $\mathcal{F}_{\psi}^{+}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left(\psi_{0}^{n}, \psi_{0}^{n+1}, \ldots\right)$
- $\mathcal{F}_{\psi}^{-}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left(\psi_{-n}^{0}, \psi_{-n-1}^{0}, \ldots\right)$

Fine tail fields 2

- E.g., if $\psi: \Omega \rightarrow \mathbb{Z}^{d}$ is defined by $\psi(\omega)=e_{i} \in \mathbb{Z}^{d}$ if $\omega_{0}=a_{i}$, then $\psi_{0}^{n-1}(\omega)$ gives in each entry i the number of times that a_{i} appears in the first n entries in ω : this ψ is the symbol-counting cocycle.
- $\mathcal{F}_{\psi}^{+}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left(\psi_{0}^{n}, \psi_{0}^{n+1}, \ldots\right)$
- $\mathcal{F}_{\psi}^{-}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left(\psi_{-n}^{0}, \psi_{-n-1}^{0}, \ldots\right)$
- $\mathcal{F}_{\psi}^{ \pm}(\alpha)=\bigcap_{n \geq 0} \mathcal{B}\left\{\psi_{-j}^{j}: j \geq 0\right\}$

Equivalence relations

- These finer sigma-algebras are also the saturated sets of corresponding Borel equivalence relations

Equivalence relations

- These finer sigma-algebras are also the saturated sets of corresponding Borel equivalence relations
- $\omega \sim \omega^{\prime}$ if and only if ω, ω^{\prime} differ in only finitely many coordinates and $\sum_{0 \text { or }-\infty}^{\infty}\left[\psi\left(\sigma^{k} \omega\right)-\psi\left(\sigma^{k} \omega^{\prime}\right)\right]=0$.

Equivalence relations

- These finer sigma-algebras are also the saturated sets of corresponding Borel equivalence relations
- $\omega \sim \omega^{\prime}$ if and only if ω, ω^{\prime} differ in only finitely many coordinates and $\sum_{0 \text { or }-\infty}^{\infty}\left[\psi\left(\sigma^{k} \omega\right)-\psi\left(\sigma^{k} \omega^{\prime}\right)\right]=0$.
- When ψ is the symbol-counting cocycle, these equivalence relations are the orbit relation of the group of finite coordinate permutations.

Relations among fields

- Note that $\mathcal{F}_{\psi}^{+}(\alpha) \supset \mathcal{T}^{+}$and $\mathcal{F}_{\psi}^{-}(\alpha) \supset \mathcal{T}^{-}$.

Relations among fields

- Note that $\mathcal{F}_{\psi}^{+}(\alpha) \supset \mathcal{T}^{+}$and $\mathcal{F}_{\psi}^{-}(\alpha) \supset \mathcal{T}^{-}$.
- Also, $\mathcal{T}^{ \pm} \supset \mathcal{T}^{+}, \mathcal{T}^{-}$

Relations among fields

- Note that $\mathcal{F}_{\psi}^{+}(\alpha) \supset \mathcal{T}^{+}$and $\mathcal{F}_{\psi}^{-}(\alpha) \supset \mathcal{T}^{-}$.
- Also, $\mathcal{T}^{ \pm} \supset \mathcal{T}^{+}, \mathcal{T}^{-}$
- but sometimes $\mathcal{T}^{ \pm} \neq \mathcal{T}^{+} \cap \mathcal{T}^{-}$

Relations among fields

- Note that $\mathcal{F}_{\psi}^{+}(\alpha) \supset \mathcal{T}^{+}$and $\mathcal{F}_{\psi}^{-}(\alpha) \supset \mathcal{T}^{-}$.
- Also, $\mathcal{T}^{ \pm} \supset \mathcal{T}^{+}, \mathcal{T}^{-}$
- but sometimes $\mathcal{T}^{ \pm} \neq \mathcal{T}^{+} \cap \mathcal{T}^{-}$
- and sometimes $\mathcal{F}_{\psi}^{ \pm}(\alpha) \nsupseteq \mathcal{F}_{\psi}^{+}(\alpha), \mathcal{F}_{\psi}^{-}(\alpha)$.

Super-K

- We say that a process (α, T) is super- K^{+}if $\mathcal{F}_{\psi}^{+}(\alpha)$ is trivial, with ψ the symbol-counting cocycle.

Super-K

- We say that a process (α, T) is super- K^{+}if $\mathcal{F}_{\psi}^{+}(\alpha)$ is trivial, with ψ the symbol-counting cocycle.
- Super- K^{-}and super- $K^{ \pm}$are defined similarly.

Super-K

- We say that a process (α, T) is super- K^{+}if $\mathcal{F}_{\psi}^{+}(\alpha)$ is trivial, with ψ the symbol-counting cocycle.
- Super- K^{-}and super- $K^{ \pm}$are defined similarly.
- For example, Bernoulli processes are super- K^{+}, super- K^{-}, and super- $K^{ \pm}$(Hewitt-Savage, 1988).

Super-K

- We say that a process (α, T) is super- K^{+}if $\mathcal{F}_{\psi}^{+}(\alpha)$ is trivial, with ψ the symbol-counting cocycle.
- Super- K^{-}and super- $K^{ \pm}$are defined similarly.
- For example, Bernoulli processes are super- K^{+}, super- K^{-}, and super- $K^{ \pm}$(Hewitt-Savage, 1988).
- There are also such results for the 2-sided case by Blackwell-Freedman for Markov processes, Georgii for Gibbs states, Berbee-den Hollander for integer-valued processes, and others.

Dependence on the partition

- But we don't know, for example, whether $\mathcal{F}_{\psi}^{+}(\alpha)$ trivial implies $\mathcal{F}_{\psi}^{-}(\alpha)$ trivial.

Dependence on the partition

- But we don't know, for example, whether $\mathcal{F}_{\psi}^{+}(\alpha)$ trivial implies $\mathcal{F}_{\psi}^{-}(\alpha)$ trivial.
- And unlike the K property, super- K depends on the choice of generating partition.

Dependence on the partition

- But we don't know, for example, whether $\mathcal{F}_{\psi}^{+}(\alpha)$ trivial implies $\mathcal{F}_{\psi}^{-}(\alpha)$ trivial.
- And unlike the K property, super- K depends on the choice of generating partition.
- We can have $\mathcal{F}_{\psi}^{+}(\alpha)$ trivial and find a refinement $\beta \geq \alpha$ with $\mathcal{F}_{\psi}^{+}(\beta)$ nontrivial (in fact equal to \mathcal{B}).

Triviality of two-sided fine tails

- K. Schmidt-KP, 1997: Let μ be a shift-invariant Gibbs measure with summable-variation potential on a mixing $\operatorname{SFT} \Sigma_{M}$;

Triviality of two-sided fine tails

- K. Schmidt-KP, 1997: Let μ be a shift-invariant Gibbs measure with summable-variation potential on a mixing $\operatorname{SFT} \Sigma_{M}$;
- $\psi: \Sigma_{M} \rightarrow G$ a continuous function into a countable discrete group with finite conjugacy classes.

Triviality of two-sided fine tails

- K. Schmidt-KP, 1997: Let μ be a shift-invariant Gibbs measure with summable-variation potential on a mixing $\operatorname{SFT} \Sigma_{M}$;
- $\psi: \Sigma_{M} \rightarrow G$ a continuous function into a countable discrete group with finite conjugacy classes.
- Then $\mathcal{F}_{\psi}^{ \pm}(\alpha)$ is trivial-i.e., μ is ergodic with respect to the equivalence relation defined by $\psi:(\Omega, \mu, \sigma)$ is super- $K^{ \pm}$.

Triviality of two-sided fine tails

- K. Schmidt-KP, 1997: Let μ be a shift-invariant Gibbs measure with summable-variation potential on a mixing $\operatorname{SFT} \Sigma_{M}$;
- $\psi: \Sigma_{M} \rightarrow G$ a continuous function into a countable discrete group with finite conjugacy classes.
- Then $\mathcal{F}_{\psi}^{ \pm}(\alpha)$ is trivial-i.e., μ is ergodic with respect to the equivalence relation defined by $\psi:(\Omega, \mu, \sigma)$ is super- $K^{ \pm}$.
- K. Schmidt, 1999: If (X, \mathcal{B}, μ, T) is ergodic and $\psi: X \rightarrow G$ (as above) is Borel, then $\mathcal{F}_{\psi}^{ \pm}(\alpha)=\mathcal{T}^{ \pm}$.

Triviality of two-sided fine tails

- K. Schmidt-KP, 1997: Let μ be a shift-invariant Gibbs measure with summable-variation potential on a mixing $\operatorname{SFT} \Sigma_{M}$;
- $\psi: \Sigma_{M} \rightarrow G$ a continuous function into a countable discrete group with finite conjugacy classes.
- Then $\mathcal{F}_{\psi}^{ \pm}(\alpha)$ is trivial-i.e., μ is ergodic with respect to the equivalence relation defined by $\psi:(\Omega, \mu, \sigma)$ is super- $K^{ \pm}$.
- K. Schmidt, 1999: If (X, \mathcal{B}, μ, T) is ergodic and $\psi: X \rightarrow G$ (as above) is Borel, then $\mathcal{F}_{\psi}^{ \pm}(\alpha)=\mathcal{T}^{ \pm}$.
- Interpretation: History is useless and science is impossible.

Triviality of two-sided fine tails

- K. Schmidt-KP, 1997: Let μ be a shift-invariant Gibbs measure with summable-variation potential on a mixing $\operatorname{SFT} \Sigma_{M}$;
- $\psi: \Sigma_{M} \rightarrow G$ a continuous function into a countable discrete group with finite conjugacy classes.
- Then $\mathcal{F}_{\psi}^{ \pm}(\alpha)$ is trivial-i.e., μ is ergodic with respect to the equivalence relation defined by $\psi:(\Omega, \mu, \sigma)$ is super- $K^{ \pm}$.
- K. Schmidt, 1999: If (X, \mathcal{B}, μ, T) is ergodic and $\psi: X \rightarrow G$ (as above) is Borel, then $\mathcal{F}_{\psi}^{ \pm}(\alpha)=\mathcal{T}^{ \pm}$.
- Interpretation: History is useless and science is impossible.
- Corollary: Any process (could be countable-state) with 2-sided trivial tail field $\mathcal{T}^{ \pm}$is super- $K^{ \pm}: \mathcal{F}_{\psi}^{ \pm}(\alpha)$ is trivial.

Super- K^{+}generators

- JPT-KP, 2004: If an ergodic system (X, \mathcal{B}, μ, T), with generator α, is isomorphic to the direct product of a positive-entropy Bernoulli system (B, σ) and some other system (Y, S), then there is a generator β for (X, \mathcal{B}, μ, T) such that $\mathcal{F}^{+}(\beta)=\mathcal{T}^{+}(\beta)=\mathcal{T}^{+}$.

Super- K^{+}generators

- JPT-KP, 2004: If an ergodic system (X, \mathcal{B}, μ, T), with generator α, is isomorphic to the direct product of a positive-entropy Bernoulli system (B, σ) and some other system (Y, S), then there is a generator β for (X, \mathcal{B}, μ, T) such that $\mathcal{F}^{+}(\beta)=\mathcal{T}^{+}(\beta)=\mathcal{T}^{+}$.
- Consequently, every K process with a direct Bernoulli factor has a super- K^{+}generator (since then \mathcal{T}^{+}, the Pinsker algebra, is trivial).

Super- K^{+}generators

- JPT-KP, 2004: If an ergodic system (X, \mathcal{B}, μ, T), with generator α, is isomorphic to the direct product of a positive-entropy Bernoulli system (B, σ) and some other system (Y, S), then there is a generator β for (X, \mathcal{B}, μ, T) such that $\mathcal{F}^{+}(\beta)=\mathcal{T}^{+}(\beta)=\mathcal{T}^{+}$.
- Consequently, every K process with a direct Bernoulli factor has a super- K^{+}generator (since then \mathcal{T}^{+}, the Pinsker algebra, is trivial).
- The idea of the proof is to construct a generating partition β with $\mathcal{F}^{+}(\beta) \subset \mathcal{T}^{+}(\beta)$, so that no new information is provided by counting β-symbols.

Odometers

- For the full shift on $A^{\mathbb{N}}$, the group Γ of finite coordinate changes has the invariant sets equal to \mathcal{T}^{+}.

Odometers

- For the full shift on $A^{\mathbb{N}}$, the group Γ of finite coordinate changes has the invariant sets equal to \mathcal{T}^{+}.
- The orbits are the same as those of the d-odometer.

Odometers

- For the full shift on $A^{\mathbb{N}}$, the group Γ of finite coordinate changes has the invariant sets equal to \mathcal{T}^{+}.
- The orbits are the same as those of the d-odometer.
- Similarly for a $\operatorname{SFT} \Sigma_{M}: \mathcal{T}^{+}$is the field of invariant sets for the stationary adic.

Odometers

- For the full shift on $A^{\mathbb{N}}$, the group Γ of finite coordinate changes has the invariant sets equal to \mathcal{T}^{+}.
- The orbits are the same as those of the d-odometer.
- Similarly for a $\operatorname{SFT} \Sigma_{M}: \mathcal{T}^{+}$is the field of invariant sets for the stationary adic.

Graphs for the fine tail fields

- For the fine tail fields $\mathcal{F}_{\psi}^{+}(\alpha)$, we form a graph whose vertices are the possible values of $\psi_{0}^{n}(x)$.

Graphs for the fine tail fields

- For the fine tail fields $\mathcal{F}_{\psi}^{+}(\alpha)$, we form a graph whose vertices are the possible values of $\psi_{0}^{n}(x)$.
- Suppose the values taken by ψ (assume it's a 1-block map) are the members of the alphabet $A=\left\{a_{1}, \ldots, a_{r}\right\} \subset \mathbb{Z}^{d}$ (could be a multiset).

Graphs for the fine tail fields

- For the fine tail fields $\mathcal{F}_{\psi}^{+}(\alpha)$, we form a graph whose vertices are the possible values of $\psi_{0}^{n}(x)$.
- Suppose the values taken by ψ (assume it's a 1-block map) are the members of the alphabet $A=\left\{a_{1}, \ldots, a_{r}\right\} \subset \mathbb{Z}^{d}$ (could be a multiset).
- The vertices are 0 and all $s_{n}(x)=\sum_{k=1}^{n} \psi\left(x_{k}\right)$,

Graphs for the fine tail fields

- For the fine tail fields $\mathcal{F}_{\psi}^{+}(\alpha)$, we form a graph whose vertices are the possible values of $\psi_{0}^{n}(x)$.
- Suppose the values taken by ψ (assume it's a 1-block map) are the members of the alphabet $A=\left\{a_{1}, \ldots, a_{r}\right\} \subset \mathbb{Z}^{d}$ (could be a multiset).
- The vertices are 0 and all $s_{n}(x)=\sum_{k=1}^{n} \psi\left(x_{k}\right)$,
- with $x=\left(x_{k}\right) \in A^{\mathbb{N}}$ giving the edge labels of a path in \mathbb{Z}^{d} :

Graphs for the fine tail fields

- For the fine tail fields $\mathcal{F}_{\psi}^{+}(\alpha)$, we form a graph whose vertices are the possible values of $\psi_{0}^{n}(x)$.
- Suppose the values taken by ψ (assume it's a 1-block map) are the members of the alphabet $A=\left\{a_{1}, \ldots, a_{r}\right\} \subset \mathbb{Z}^{d}$ (could be a multiset).
- The vertices are 0 and all $s_{n}(x)=\sum_{k=1}^{n} \psi\left(x_{k}\right)$,
- with $x=\left(x_{k}\right) \in A^{\mathbb{N}}$ giving the edge labels of a path in \mathbb{Z}^{d} :
- x_{k} labels the edge from $s_{k-1}(x)$ to $s_{k}(x)$.

Adic systems present tail fields

- The fine tail equivalence relation on $A^{\mathbb{N}}$ has $x \sim y$ if there is N such that $s_{n}(x)=s_{n}(y)$ for all $n \geq N$: the paths are cofinal-eventually coincide.

Adic systems present tail fields

- The fine tail equivalence relation on $A^{\mathbb{N}}$ has $x \sim y$ if there is N such that $s_{n}(x)=s_{n}(y)$ for all $n \geq N$: the paths are cofinal-eventually coincide.
- The equivalence classes are the orbits of any adic (Bratteli-Vershik) transformation that is defined on most of $A^{\mathbb{N}}$ once the incoming edges to each vertex are given a total order.

Adic systems present tail fields

- The fine tail equivalence relation on $A^{\mathbb{N}}$ has $x \sim y$ if there is N such that $s_{n}(x)=s_{n}(y)$ for all $n \geq N$: the paths are cofinal-eventually coincide.
- The equivalence classes are the orbits of any adic (Bratteli-Vershik) transformation that is defined on most of $A^{\mathbb{N}}$ once the incoming edges to each vertex are given a total order.
- The invariant sets of each such adic transformation are $\mathcal{F}_{\psi}^{+}(\alpha)$.

Adic systems present tail fields

- The fine tail equivalence relation on $A^{\mathbb{N}}$ has $x \sim y$ if there is N such that $s_{n}(x)=s_{n}(y)$ for all $n \geq N$: the paths are cofinal-eventually coincide.
- The equivalence classes are the orbits of any adic (Bratteli-Vershik) transformation that is defined on most of $A^{\mathbb{N}}$ once the incoming edges to each vertex are given a total order.
- The invariant sets of each such adic transformation are $\mathcal{F}_{\psi}^{+}(\alpha)$.
- Thus these systems visually present the future fine tail fields-we can see the corresponding equivalence relations.

The Pascal walk

The Delannoy walk

The Delannoy graph

Xavier Méla's X_{3} walk

Xavier Méla's X_{3}

Frick's $2 x+1$ walk

Frick's $2 x+1$ system

A walk with 4 vectors

An isotropic adic system based on a walk with 4 vectors

Ordering incoming edges to define the transformation

Ergodic measures

Identifying the invariant measures depends on knowing the path counts $\operatorname{dim}(v, w)=$ number of paths from v to w.
For Pascal, $\binom{n-n_{0}}{k-k_{0}}$.
For Delannoy, $D(i, j)=\sum_{d=0}^{j} 2^{d}\binom{i}{d}\binom{j}{d}$.

Recurrence formula and generating function for Delannoy numbers

$$
\begin{gathered}
D(n, 0)=D(0, n)=1 \text { for all } n \geq 0 \\
D(n, k)=0 \text { if either } n \text { or } k<0 \\
D(n, k)=D(n, k-1)+D(n-1, k-1)+D(n-1, k) \text { for all } n, k .
\end{gathered}
$$

$$
\sum_{n, k \geq 0} D(n, k) x^{n} y^{k}=\frac{1}{1-(x+y+x y)}
$$

Various formulas for Delannoy numbers

Assuming $n \geq k$,

$$
\begin{gathered}
D(n, k)=\sum_{d=0}^{k}\binom{k}{d}\binom{n+k-d}{k}=\sum_{d=0}^{k} 2^{d}\binom{n}{d}\binom{k}{d} \\
=\sum_{d=0}^{k}\binom{k}{d}\binom{n+d}{k}=\sum_{d=0}^{k}\binom{k}{k-d}\binom{n+d}{k} \\
=\sum_{d=0}^{k}\binom{n+k-d}{k-d}\binom{n}{d}=\sum_{d=0}^{k}\binom{n+d}{d}\binom{n}{k-d}
\end{gathered}
$$

Asymptotics of Delannoy numbers on the diagonal

$$
D(n, n) \sim(3+2 \sqrt{2})^{n}\left(.57 \sqrt{n}-.067 n^{-3 / 2}+.006 n^{-5 / 2}+\ldots\right) .
$$

Invariant measures for the Delannoy adic

Theorem
The non-atomic ergodic (invariant probability) measures for the Delannoy adic dynamical system are a one-parameter family $\left\{\mu_{\alpha}: \alpha \in[0,1]\right\}$ given by choosing nonnegative α, β, γ with $\alpha+\beta+\gamma=1$ and $\beta \gamma=\alpha$ and then putting weight β on each horizontal edge, weight γ on each vertical edge, and weight α on each diagonal edge. (The measure of any cylinder set is then determined by multiplying the weights on the edges that define it.)

The Delannoy adic

Ingredients of the proof

- Pemantle-Wilson asymptotics for the Delannoy numbers:

$$
\begin{aligned}
& D(n, k) \sim\left(\frac{\sqrt{n^{2}+k^{2}}-k}{n}\right)^{-n}\left(\frac{\sqrt{n^{2}+k^{2}}-n}{k}\right)^{-k} \times \\
& \sqrt{\frac{1}{2 \pi}} \sqrt{\frac{n k}{\left(n+k-\sqrt{n^{2}+k^{2}}\right)^{2} \sqrt{n^{2}+k^{2}}}}
\end{aligned}
$$

uniformly if n / k and k / n are bounded.

- Collision argument based on recurrence of symmetric random walk in \mathbb{Z}^{2}
- X. Méla's isotropy argument

Total ergodicity of the Delannoy adics

Theorem
With respect to each of its ergodic (invariant probability) measures, the Delannoy adic dynamical system is totally ergodic (i.e., has among its eigenvalues no roots of unity besides 1).

Total ergodicity of the Delannoy adics

Theorem
With respect to each of its ergodic (invariant probability) measures, the Delannoy adic dynamical system is totally ergodic (i.e., has among its eigenvalues no roots of unity besides 1).

Theorem
For p prime, $r \geq 0$, and $n=0,1,2, \ldots$,

$$
\left.D\left(n, p^{r}-1\right) \equiv_{p}(-1)^{(n} \bmod p^{r}\right) .
$$

The Delannoy graph with a "blocking set"

Remarks on the Delannoy system

- The Delannoy system is essentially expansive: for each of its ergodic measures, it is isomorphic to a subshift on $\{h, d, v\}$, given by concatenating blocks at the vertices, with a shift-invariant measure.

Remarks on the Delannoy system

- The Delannoy system is essentially expansive: for each of its ergodic measures, it is isomorphic to a subshift on $\{h, d, v\}$, given by concatenating blocks at the vertices, with a shift-invariant measure.
- The subshift is topologically weakly mixing.

Remarks on the Delannoy system

- The Delannoy system is essentially expansive: for each of its ergodic measures, it is isomorphic to a subshift on $\{h, d, v\}$, given by concatenating blocks at the vertices, with a shift-invariant measure.
- The subshift is topologically weakly mixing.
- With each ergodic measure, the Delannoy adic is loosely Bernoulli.

Remarks on the Delannoy system

- The Delannoy system is essentially expansive: for each of its ergodic measures, it is isomorphic to a subshift on $\{h, d, v\}$, given by concatenating blocks at the vertices, with a shift-invariant measure.
- The subshift is topologically weakly mixing.
- With each ergodic measure, the Delannoy adic is loosely Bernoulli.
- We do not know about limit laws for return times, weak mixing, multiplicity of the spectrum, or joinings.

Remarks on the Delannoy system

- The Delannoy system is essentially expansive: for each of its ergodic measures, it is isomorphic to a subshift on $\{h, d, v\}$, given by concatenating blocks at the vertices, with a shift-invariant measure.
- The subshift is topologically weakly mixing.
- With each ergodic measure, the Delannoy adic is loosely Bernoulli.
- We do not know about limit laws for return times, weak mixing, multiplicity of the spectrum, or joinings.
- But there is some progress on the complexity ($n^{3} / 24$ for the Delannoy, by Sarah Bailey Frick) and on generalizing these considerations to a class of systems.

Criteria for expansiveness of adic systems

- We want to code the adic transformation (essentially faithfully) by the first edge (or initial segment of a fixed length): expansiveness.

Criteria for expansiveness of adic systems

- We want to code the adic transformation (essentially faithfully) by the first edge (or initial segment of a fixed length): expansiveness.
- It is faithful for the Pascal (Méla), Pascal-based (Frick), Delannoy, and some others.

Criteria for expansiveness of adic systems

- We want to code the adic transformation (essentially faithfully) by the first edge (or initial segment of a fixed length): expansiveness.
- It is faithful for the Pascal (Méla), Pascal-based (Frick), Delannoy, and some others.
- We are trying to produce a general argument as well as describe the fibers in cases where the coding is not faithful.

Criteria for expansiveness of adic systems

- We want to code the adic transformation (essentially faithfully) by the first edge (or initial segment of a fixed length): expansiveness.
- It is faithful for the Pascal (Méla), Pascal-based (Frick), Delannoy, and some others.
- We are trying to produce a general argument as well as describe the fibers in cases where the coding is not faithful.
- We are still lacking useful criteria for expansiveness of adic systems.

Complexities of adic systems

- We want to calculate the complexity $P(n)=$ number of n-blocks in the coding, asymptotically.

Complexities of adic systems

- We want to calculate the complexity $P(n)=$ number of n-blocks in the coding, asymptotically.
- For the Pascal, $p(n) \sim n^{3} / 6$ (Méla).

Complexities of adic systems

- We want to calculate the complexity $P(n)=$ number of n-blocks in the coding, asymptotically.
- For the Pascal, $p(n) \sim n^{3} / 6$ (Méla).
- For the Delannoy, $P(n) \sim n^{3} / 24$ (Frick).

Complexities of adic systems

- We want to calculate the complexity $P(n)=$ number of n-blocks in the coding, asymptotically.
- For the Pascal, $p(n) \sim n^{3} / 6$ (Méla).
- For the Delannoy, $P(n) \sim n^{3} / 24$ (Frick).
- Again general methods for estimating $P(n)$ asymptotically are needed.

Varying orders on Bratteli diagrams

- These properties depend on the choice of order of the incoming edges.

Varying orders on Bratteli diagrams

- These properties depend on the choice of order of the incoming edges.
- For a given adic system, what is the maximum complexity over all possible orders?

Varying orders on Bratteli diagrams

- These properties depend on the choice of order of the incoming edges.
- For a given adic system, what is the maximum complexity over all possible orders?
- What is the expected complexity if the orders at the vertices are chosen independently according to a fixed Bernoulli measure?

Varying orders on Bratteli diagrams

- These properties depend on the choice of order of the incoming edges.
- For a given adic system, what is the maximum complexity over all possible orders?
- What is the expected complexity if the orders at the vertices are chosen independently according to a fixed Bernoulli measure?
- It seems that for the Pascal, for every order $P(n)$ is asymptotically no more than $n^{5} / 3$ (and maybe for the union it's still $n^{3} / 6$).

Varying orders on Bratteli diagrams

- These properties depend on the choice of order of the incoming edges.
- For a given adic system, what is the maximum complexity over all possible orders?
- What is the expected complexity if the orders at the vertices are chosen independently according to a fixed Bernoulli measure?
- It seems that for the Pascal, for every order $P(n)$ is asymptotically no more than $n^{5} / 3$ (and maybe for the union it's still $n^{3} / 6$).
- Recall that Bezuglyi, Kwiatkowski, Yassawi have investigated the probability that an order is "perfect", i.e. admits the Vershik map as a homeomorphism.

Varying orders on Bratteli diagrams

- These properties depend on the choice of order of the incoming edges.
- For a given adic system, what is the maximum complexity over all possible orders?
- What is the expected complexity if the orders at the vertices are chosen independently according to a fixed Bernoulli measure?
- It seems that for the Pascal, for every order $P(n)$ is asymptotically no more than $n^{5} / 3$ (and maybe for the union it's still $n^{3} / 6$).
- Recall that Bezuglyi, Kwiatkowski, Yassawi have investigated the probability that an order is "perfect", i.e. admits the Vershik map as a homeomorphism.
- They also showed that for a fixed finite rank diagram there is a number J such that with probability 1 there are J maximal paths and J minimal paths.

Pascal dynamics

Here are a few results from the thesis of X . Méla.

- The subshift coming from coding by the first edge is topologically weakly mixing: there are no nonconstant eigenfunctions with a residual set of continuity points (Keynes-Robertson condition)

Pascal dynamics

Here are a few results from the thesis of X . Méla.

- The subshift coming from coding by the first edge is topologically weakly mixing: there are no nonconstant eigenfunctions with a residual set of continuity points (Keynes-Robertson condition)
- Complexity: $P(n)=\#$ of words of length $n \sim n^{3} / 6$

Pascal dynamics

Here are a few results from the thesis of X . Méla.

- The subshift coming from coding by the first edge is topologically weakly mixing: there are no nonconstant eigenfunctions with a residual set of continuity points (Keynes-Robertson condition)
- Complexity: $P(n)=\#$ of words of length $n \sim n^{3} / 6$
- There is a piecewise continuous limit law for entrance times to cylinder sets.

Pascal dynamics

Here are a few results from the thesis of X . Méla.

- The subshift coming from coding by the first edge is topologically weakly mixing: there are no nonconstant eigenfunctions with a residual set of continuity points (Keynes-Robertson condition)
- Complexity: $P(n)=\#$ of words of length $n \sim n^{3} / 6$
- There is a piecewise continuous limit law for entrance times to cylinder sets.
- The Pascal with each of its ergodic measures is loosely Bernoulli (de la Rue and Janvresse; Frick for the Euler).

Questions about the Pascal systems

- Is the system weakly mixing with respect to each of its ergodic invariant measures?

Questions about the Pascal systems

- Is the system weakly mixing with respect to each of its ergodic invariant measures?
- Conjecture: If $k_{0}=0$ and $k_{n+1}-k_{n} \in\{0,1\}$ for all $n \geq 0$, and if $z \in \mathbb{C}$ is such that $z^{C\left(n, k_{n}\right)} \rightarrow 1$ as $n \rightarrow \infty$, then $z=1$.

Questions about the Pascal systems

- Is the system weakly mixing with respect to each of its ergodic invariant measures?
- Conjecture: If $k_{0}=0$ and $k_{n+1}-k_{n} \in\{0,1\}$ for all $n \geq 0$, and if $z \in \mathbb{C}$ is such that $z^{C\left(n, k_{n}\right)} \rightarrow 1$ as $n \rightarrow \infty$, then $z=1$.
- Terry Adams-KP have partial results in this direction. For example, they show that for each α there are a dense G_{δ} set of $\lambda \in S^{1}$ and a set of full μ_{α} measure of paths x such that $\lambda^{d_{n}(x)} \approx 1$ for many n-so that λ is a candidate eigenvalue-but $\left\{\lambda^{d_{n}(x)}\right\}$ is dense in S^{1}.

Questions about the Pascal systems

- Is the system weakly mixing with respect to each of its ergodic invariant measures?
- Conjecture: If $k_{0}=0$ and $k_{n+1}-k_{n} \in\{0,1\}$ for all $n \geq 0$, and if $z \in \mathbb{C}$ is such that $z^{C\left(n, k_{n}\right)} \rightarrow 1$ as $n \rightarrow \infty$, then $z=1$.
- Terry Adams-KP have partial results in this direction. For example, they show that for each α there are a dense G_{δ} set of $\lambda \in S^{1}$ and a set of full μ_{α} measure of paths x such that $\lambda^{d_{n}(x)} \approx 1$ for many n-so that λ is a candidate eigenvalue-but $\left\{\lambda^{d_{n}(x)}\right\}$ is dense in S^{1}.
- And a couple of their questions have been answered by Behrend, Boshernitzan, and Kolesnik:

Questions about the Pascal systems

- Is the system weakly mixing with respect to each of its ergodic invariant measures?
- Conjecture: If $k_{0}=0$ and $k_{n+1}-k_{n} \in\{0,1\}$ for all $n \geq 0$, and if $z \in \mathbb{C}$ is such that $z^{C\left(n, k_{n}\right)} \rightarrow 1$ as $n \rightarrow \infty$, then $z=1$.
- Terry Adams-KP have partial results in this direction. For example, they show that for each α there are a dense G_{δ} set of $\lambda \in S^{1}$ and a set of full μ_{α} measure of paths x such that $\lambda^{d_{n}(x)} \approx 1$ for many n-so that λ is a candidate eigenvalue-but $\left\{\lambda^{d_{n}(x)}\right\}$ is dense in S^{1}.
- And a couple of their questions have been answered by Behrend, Boshernitzan, and Kolesnik:
- (1) $\left\{\lambda^{d_{n}(x)}\right\}$ is uniformly distributed in S^{1} for every λ not a root of unity if and only if x is eventually diagonal.

Questions about the Pascal systems

- Is the system weakly mixing with respect to each of its ergodic invariant measures?
- Conjecture: If $k_{0}=0$ and $k_{n+1}-k_{n} \in\{0,1\}$ for all $n \geq 0$, and if $z \in \mathbb{C}$ is such that $z^{C\left(n, k_{n}\right)} \rightarrow 1$ as $n \rightarrow \infty$, then $z=1$.
- Terry Adams-KP have partial results in this direction. For example, they show that for each α there are a dense G_{δ} set of $\lambda \in S^{1}$ and a set of full μ_{α} measure of paths x such that $\lambda^{d_{n}(x)} \approx 1$ for many n-so that λ is a candidate eigenvalue-but $\left\{\lambda^{d_{n}(x)}\right\}$ is dense in S^{1}.
- And a couple of their questions have been answered by Behrend, Boshernitzan, and Kolesnik:
- (1) $\left\{\lambda^{d_{n}(x)}\right\}$ is uniformly distributed in S^{1} for every λ not a root of unity if and only if x is eventually diagonal.
- (2) There is no λ such that $\left\{\lambda^{d_{n}(x)}\right\}$ is uniformly distributed in S^{1} for every x except the two edge paths.

Questions about the Pascal systems

- Is the system weakly mixing with respect to each of its ergodic invariant measures?
- Conjecture: If $k_{0}=0$ and $k_{n+1}-k_{n} \in\{0,1\}$ for all $n \geq 0$, and if $z \in \mathbb{C}$ is such that $z^{C\left(n, k_{n}\right)} \rightarrow 1$ as $n \rightarrow \infty$, then $z=1$.
- Terry Adams-KP have partial results in this direction. For example, they show that for each α there are a dense G_{δ} set of $\lambda \in S^{1}$ and a set of full μ_{α} measure of paths x such that $\lambda^{d_{n}(x)} \approx 1$ for many n-so that λ is a candidate eigenvalue-but $\left\{\lambda^{d_{n}(x)}\right\}$ is dense in S^{1}.
- And a couple of their questions have been answered by Behrend, Boshernitzan, and Kolesnik:
- (1) $\left\{\lambda^{d_{n}(x)}\right\}$ is uniformly distributed in S^{1} for every λ not a root of unity if and only if x is eventually diagonal.
- (2) There is no λ such that $\left\{\lambda^{d_{n}(x)}\right\}$ is uniformly distributed in S^{1} for every x except the two edge paths.
- Possible new avenues toward proving weak mixing of the Pascal are being explored by A. Prikhodko and A. Vershik.

Rank

- Is the system not of local rank 1 (hence infinite rank) for each μ_{α} ?

Rank

- Is the system not of local rank 1 (hence infinite rank) for each μ_{α} ?
- Local rank 1 would imply that there is $a>0$ such that there are infinitely many m for which there is an m-block B such that

$$
\mu_{\alpha}\left(\bar{d}_{m}-\delta \text {-ball around } B\right)>(a-\delta) / m .
$$

Rank

- Is the system not of local rank 1 (hence infinite rank) for each μ_{α} ?
- Local rank 1 would imply that there is $a>0$ such that there are infinitely many m for which there is an m-block B such that

$$
\mu_{\alpha}\left(\bar{d}_{m}-\delta \text {-ball around } B\right)>(a-\delta) / m .
$$

- Maybe there is $\delta>0$ such that for large n and $k / n \approx \alpha$, the \bar{d}_{m}-ball around the block $B(n, k)$ consists only of $B(n, k)$.

Rank

- Is the system not of local rank 1 (hence infinite rank) for each μ_{α} ?
- Local rank 1 would imply that there is $a>0$ such that there are infinitely many m for which there is an m-block B such that

$$
\mu_{\alpha}\left(\bar{d}_{m}-\delta \text {-ball around } B\right)>(a-\delta) / m .
$$

- Maybe there is $\delta>0$ such that for large n and $k / n \approx \alpha$, the \bar{d}_{m}-ball around the block $B(n, k)$ consists only of $B(n, k)$.
- Maybe

$$
C\left(n, k_{n}\right) \mu_{\alpha}\left\{x: \bar{d}\left(x_{1}^{C\left(n, k_{n}\right)}, B_{n, k_{n}}\right)<\delta\right\} \rightarrow 0 \text { as } \frac{k_{n}}{n} \rightarrow \alpha ?
$$

Rank

- Is the system not of local rank 1 (hence infinite rank) for each μ_{α} ?
- Local rank 1 would imply that there is $a>0$ such that there are infinitely many m for which there is an m-block B such that

$$
\mu_{\alpha}\left(\bar{d}_{m}-\delta \text {-ball around } B\right)>(a-\delta) / m .
$$

- Maybe there is $\delta>0$ such that for large n and $k / n \approx \alpha$, the \bar{d}_{m}-ball around the block $B(n, k)$ consists only of $B(n, k)$.
- Maybe

$$
C\left(n, k_{n}\right) \mu_{\alpha}\left\{x: \bar{d}\left(x_{1}^{C\left(n, k_{n}\right)}, B_{n, k_{n}}\right)<\delta\right\} \rightarrow 0 \text { as } \frac{k_{n}}{n} \rightarrow \alpha ?
$$

- Is the maximal spectral type singular? What are the joinings of μ_{α} and μ_{β} ?

Rank

- Is the system not of local rank 1 (hence infinite rank) for each μ_{α} ?
- Local rank 1 would imply that there is $a>0$ such that there are infinitely many m for which there is an m-block B such that

$$
\mu_{\alpha}\left(\bar{d}_{m}-\delta \text {-ball around } B\right)>(a-\delta) / m .
$$

- Maybe there is $\delta>0$ such that for large n and $k / n \approx \alpha$, the \bar{d}_{m}-ball around the block $B(n, k)$ consists only of $B(n, k)$.
- Maybe

$$
C\left(n, k_{n}\right) \mu_{\alpha}\left\{x: \bar{d}\left(x_{1}^{C\left(n, k_{n}\right)}, B_{n, k_{n}}\right)<\delta\right\} \rightarrow 0 \text { as } \frac{k_{n}}{n} \rightarrow \alpha ?
$$

- Is the maximal spectral type singular? What are the joinings of μ_{α} and μ_{β} ?
- Is the joint action of the Pascal and shift on $\{0,1\}^{\mathbb{Z}}$ effective (every nonidentity group element moves something)?

Rank

- Is the system not of local rank 1 (hence infinite rank) for each μ_{α} ?
- Local rank 1 would imply that there is $a>0$ such that there are infinitely many m for which there is an m-block B such that

$$
\mu_{\alpha}\left(\bar{d}_{m}-\delta \text {-ball around } B\right)>(a-\delta) / m .
$$

- Maybe there is $\delta>0$ such that for large n and $k / n \approx \alpha$, the \bar{d}_{m}-ball around the block $B(n, k)$ consists only of $B(n, k)$.
- Maybe

$$
C\left(n, k_{n}\right) \mu_{\alpha}\left\{x: \bar{d}\left(x_{1}^{C\left(n, k_{n}\right)}, B_{n, k_{n}}\right)<\delta\right\} \rightarrow 0 \text { as } \frac{k_{n}}{n} \rightarrow \alpha ?
$$

- Is the maximal spectral type singular? What are the joinings of μ_{α} and μ_{β} ?
- Is the joint action of the Pascal and shift on $\{0,1\}^{\mathbb{Z}}$ effective (every nonidentity group element moves something)?
- The joint action of the shift and 2-odometer is that of the step-2 Baumslag-Solitor group: the only relation is $\sigma T=T^{2} \sigma$.

Minimal complexity

- Coven and Hedlund (1973, Math. Systems Theory): Every nonperiodic sequence of minimal complexity- $P(n)=n+1$ for all n-must be Sturmian.

Minimal complexity

- Coven and Hedlund (1973, Math. Systems Theory): Every nonperiodic sequence of minimal complexity- $P(n)=n+1$ for all n-must be Sturmian.
- Since $P(n)=$ number of n-blocks is nondecreasing, $P(n)$ is bounded iff the sequence is eventually periodic.

Minimal complexity

- Coven and Hedlund (1973, Math. Systems Theory): Every nonperiodic sequence of minimal complexity- $P(n)=n+1$ for all n-must be Sturmian.
- Since $P(n)$ = number of n-blocks is nondecreasing, $P(n)$ is bounded iff the sequence is eventually periodic.
- Equivalently, eventually periodic is equivalent to existence of an n for which $P(n+1)=P(n)$.

Minimal complexity

- Coven and Hedlund (1973, Math. Systems Theory): Every nonperiodic sequence of minimal complexity- $P(n)=n+1$ for all n-must be Sturmian.
- Since $P(n)$ = number of n-blocks is nondecreasing, $P(n)$ is bounded iff the sequence is eventually periodic.
- Equivalently, eventually periodic is equivalent to existence of an n for which $P(n+1)=P(n)$.
- Of course for typical (random) sequences, $P(n)$ tends to grow as h^{n} for some $h>0$.

Minimal complexity

- Coven and Hedlund (1973, Math. Systems Theory): Every nonperiodic sequence of minimal complexity- $P(n)=n+1$ for all n-must be Sturmian.
- Since $P(n)$ = number of n-blocks is nondecreasing, $P(n)$ is bounded iff the sequence is eventually periodic.
- Equivalently, eventually periodic is equivalent to existence of an n for which $P(n+1)=P(n)$.
- Of course for typical (random) sequences, $P(n)$ tends to grow as h^{n} for some $h>0$.
- We consider some recent developments regarding periodic and nonperiodic "Sturmian" sequences, involving lexicographic order, Farey diagrams, and adic transfomations.

Characterizations of nonperiodic Sturmian sequences

- Minimal complexity: $P(n)=n+1$ for all n.

Characterizations of nonperiodic Sturmian sequences

- Minimal complexity: $P(n)=n+1$ for all n.
- Balanced: For any two blocks u, v of the same length, $\left||u|_{1}-|v|_{1}\right| \leq 1$.

Characterizations of nonperiodic Sturmian sequences

- Minimal complexity: $P(n)=n+1$ for all n.
- Balanced: For any two blocks u, v of the same length, $\left||u|_{1}-|v|_{1}\right| \leq 1$.
- Codings of irrational rotations: There are x and irrational θ such that for all $n, \omega(n)=1_{[1-\theta, 1)}(x+n \theta)$ or for all n, $\omega(n)=1_{(1-\theta, 1]}(x+n \theta)$.

Characterizations of nonperiodic Sturmian sequences

- Minimal complexity: $P(n)=n+1$ for all n.
- Balanced: For any two blocks u, v of the same length, $\left||u|_{1}-|v|_{1}\right| \leq 1$.
- Codings of irrational rotations: There are x and irrational θ such that for all $n, \omega(n)=1_{[1-\theta, 1)}(x+n \theta)$ or for all n, $\omega(n)=1_{(1-\theta, 1]}(x+n \theta)$.
- Staircase coding: There are x and irrational θ such that for all n, $\omega(n)=\lfloor x+(n+1) \theta\rfloor-\lfloor x+n \theta\rfloor$ or for all n, $\omega(n)=\lceil x+(n+1) \theta\rceil-\lceil x+n \theta\rceil$. (Look at jumps between lattice points above or below line through origin of slope θ. Get jump (of floor) when $n \theta$ is in $[1-\theta, 1)$.)

Lower staircase coding of 3/7

0
0
1
0
1
0
1

Farey or Stern-Brocot Diagram

Properties of Farey diagram

- Generated by adding numerators and denominators.
- Every rational in $[0,1]$ appears, generated exactly once, automatically in lowest terms.
- Two Farey neighbors, p / q and p^{\prime} / q^{\prime}, satisfy $p^{\prime} q-q^{\prime} p= \pm 1$.
- Infinite paths give best one-sided approximations to irrationals. When switch sides, have best two-sided approximations, the ordinary continued fractions.

Farey Diagram

Ordinary and intermediate continued fractions

- Let $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right), \quad A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
- Ordinary continued fractions for $x=\left[a_{1}, a_{2}, \ldots\right]$:

$$
\begin{gathered}
\left(\begin{array}{cc}
p_{n-1} & p_{n} \\
q_{n-1} & q_{n}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & a_{1}
\end{array}\right) \ldots\left(\begin{array}{cc}
0 & 1 \\
1 & a_{n}
\end{array}\right) \\
=B A^{a_{1}-1} B A^{a_{2}-1} \ldots B A^{a_{n}-1}
\end{gathered}
$$

- The intermediate products give the intermediate, Farey, approximations.

$$
x=[2,3,2,4, \ldots] \approx 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{7}{16}, \frac{10}{23}, \frac{17}{39}, \frac{24}{55}, \frac{31}{71}, \ldots
$$

- I learned about the Farey shift from papers of Jeff Lagarias.

Adic Systems and Symbolic Dynamics

ᄂSturmian Systems

-Farey diagram

Farey Diagram of Blocks

Balanced periodic sequences

- The word at position corresponding to fraction $p /(p+q)$ has p 1's and $q 0$'s (hence length $p+q$).
- The periodic sequence formed by each of these words is balanced.
- These words are Lyndon words-primitive and lexicogaphically minimal among their rotations.
- They also increase lexicographically left to right in each row.
- Every balanced word of length $p+q$ with exactly p 1's is a rotation of the word in the Farey diagram that corresponds to $p /(p+q)$. There are exactly $p+q$ of them.
- Infinite nonperiodic Sturmian sequences are found as "ends" of infinite paths in the Farey diagram.

Adic Systems and Symbolic Dynamics

ᄂSturmian Systems

-Farey diagram

Farey Diagram of Blocks

Times 2 map

- Viewed as dyadic expansions, the words in the Farey diagram correspond to periodic orbits under the map $T z=z^{2}$ on the circle. Each orbit is contained in a closed semicircle, and T preserves the cyclic order on the circle.

Times 2 map

- Viewed as dyadic expansions, the words in the Farey diagram correspond to periodic orbits under the map $T z=z^{2}$ on the circle. Each orbit is contained in a closed semicircle, and T preserves the cyclic order on the circle.
- The invariant measures coming from Sturmian minimal sets minimize the integrals of strictly convex functions (over all T-invariant measures with a fixed frequency of 1 's) (Jenkinson 2007).

Times 2 map

- Viewed as dyadic expansions, the words in the Farey diagram correspond to periodic orbits under the map $T z=z^{2}$ on the circle. Each orbit is contained in a closed semicircle, and T preserves the cyclic order on the circle.
- The invariant measures coming from Sturmian minimal sets minimize the integrals of strictly convex functions (over all T-invariant measures with a fixed frequency of 1 's) (Jenkinson 2007).
- Besides Coven-Hedlund (1973) and Hedlund-Morse (1940), we should also mention Jenkinson-Zamboni (2004), Arnoux (2002-in Pytheas Fogg), Berstel-Séébold (2002-in Lothaire), Jenkinson (1996-), Bullett-Sentenac (1994), Borel-Laubie (1993), Rauzy (1985), Gambaudo-Lanford-Tresser (1984), Hedlund (1944), Christoffel (1875), J. Bernoulli (1772), and probably others.

Why does the concatenation work?

- Prop: If $u<v$ are Lyndon words, then $u v$ is Lyndon.
- The following are equivalent:
- Two integer vectors (q, p) and $\left(q^{\prime}, p^{\prime}\right)$ span the integer lattice \mathbb{Z}^{2}.
- $p q^{\prime}-q p^{\prime}= \pm 1$.
- The parallelogram spanned by the vectors (q, p) and $\left(q^{\prime}, p^{\prime}\right)$ has no point of the integer lattice \mathbb{Z}^{2} in its interior.

$(7,3)$ is Farey child of $(5,2)$ and $(2,1)$

Subadics of the Farey diagram

- Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic transformation on the metric space of infinite paths.

Subadics of the Farey diagram

- Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic transformation on the metric space of infinite paths.
- For rational rotation number θ (the frequency of 1 's), there are 3 topologically transitive subadics, each containing a unique minimal set, isomorphic to a translation on a finite cyclic group.

Subadics of the Farey diagram

- Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic transformation on the metric space of infinite paths.
- For rational rotation number θ (the frequency of 1 's), there are 3 topologically transitive subadics, each containing a unique minimal set, isomorphic to a translation on a finite cyclic group.
- For irrational rotation number θ, there is a single minimal subadic, isomorphic to the Sturmian system with that rotation number.

Subadics of the Farey diagram

- Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic transformation on the metric space of infinite paths.
- For rational rotation number θ (the frequency of 1 's), there are 3 topologically transitive subadics, each containing a unique minimal set, isomorphic to a translation on a finite cyclic group.
- For irrational rotation number θ, there is a single minimal subadic, isomorphic to the Sturmian system with that rotation number.
- These closed invariant subsets correspond to primitive ideals of the approximately finite C^{*} algebra determined by the Farey Bratteli diagram.

Subadics of the Farey diagram

- Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic transformation on the metric space of infinite paths.
- For rational rotation number θ (the frequency of 1 's), there are 3 topologically transitive subadics, each containing a unique minimal set, isomorphic to a translation on a finite cyclic group.
- For irrational rotation number θ, there is a single minimal subadic, isomorphic to the Sturmian system with that rotation number.
- These closed invariant subsets correspond to primitive ideals of the approximately finite C^{*} algebra determined by the Farey Bratteli diagram.
- These observations were stimulated by a talk by O. Jenkinson, are based on papers by O. Bratteli and F. Boca, and were developed in conversations with T . de la Rue and E. Janvresse.

Ideals in AF algebras

- An AF algebra \mathcal{A} is the closure of the increasing union of finite-dimensional algebras \mathcal{A}_{n}, each the direct sum of the matrix algebras at level n of the Bratteli diagram.

Ideals in AF algebras

- An AF algebra \mathcal{A} is the closure of the increasing union of finite-dimensional algebras \mathcal{A}_{n}, each the direct sum of the matrix algebras at level n of the Bratteli diagram.
- The edges of the diagram indicate embeddings of lower-dimensional matrix algebras in higher-dimensional ones.

Ideals in AF algebras

- An AF algebra \mathcal{A} is the closure of the increasing union of finite-dimensional algebras \mathcal{A}_{n}, each the direct sum of the matrix algebras at level n of the Bratteli diagram.
- The edges of the diagram indicate embeddings of lower-dimensional matrix algebras in higher-dimensional ones.
- A (two-sided norm-closed) ideal in \mathcal{A} is determined by a subdiagram Λ with the following two properties:

Ideals in AF algebras

- An AF algebra \mathcal{A} is the closure of the increasing union of finite-dimensional algebras \mathcal{A}_{n}, each the direct sum of the matrix algebras at level n of the Bratteli diagram.
- The edges of the diagram indicate embeddings of lower-dimensional matrix algebras in higher-dimensional ones.
- A (two-sided norm-closed) ideal in \mathcal{A} is determined by a subdiagram Λ with the following two properties:
- Closed under successors: If $(n, i) \in \Lambda$ and $(n, i) \searrow(n+1, j)$, then $(n+1, j) \in \Lambda$;

Ideals in AF algebras

- An AF algebra \mathcal{A} is the closure of the increasing union of finite-dimensional algebras \mathcal{A}_{n}, each the direct sum of the matrix algebras at level n of the Bratteli diagram.
- The edges of the diagram indicate embeddings of lower-dimensional matrix algebras in higher-dimensional ones.
- A (two-sided norm-closed) ideal in \mathcal{A} is determined by a subdiagram Λ with the following two properties:
- Closed under successors: If $(n, i) \in \Lambda$ and $(n, i) \searrow(n+1, j)$, then $(n+1, j) \in \Lambda$;
- Closed under ancestors: If $(n+1, j) \in \Lambda$ for all j such that $(n, i) \searrow(n+1, j)$, then $(n, i) \in \Lambda$.

Adic Systems and Symbolic Dynamics

ᄂSturmian Systems

－Adics in the Farey diagram and ideals in the algebra

Ideal conditions

Adic Systems and Symbolic Dynamics

LSturmian Systems

－Adics in the Farey diagram and ideals in the algebra

Ideal conditions

4＞4句＞4 三＞4 三

Adic Systems and Symbolic Dynamics

ᄂSturmian Systems

-Adics in the Farey diagram and ideals in the algebra

Ideal conditions

Adic Systems and Symbolic Dynamics

ᄂSturmian Systems

-Adics in the Farey diagram and ideals in the algebra

Ideal conditions

Primitive ideals in \mathcal{A}

A (two-sided norm-closed) ideal $I \subset \mathcal{A}$ is primitive if and only if there are not ideals I_{1}, I_{2} in \mathcal{A}, both different from I, such that $I=I_{1} \cap I_{2}$.

Primitive ideals in \mathcal{A}

A (two-sided norm-closed) ideal $I \subset \mathcal{A}$ is primitive if and only if there are not ideals I_{1}, I_{2} in \mathcal{A}, both different from I, such that $I=I_{1} \cap I_{2}$.

In terms of the diagram Λ determining I, this means that if $(n, i),(m, j) \notin \Lambda$, then there are $p \geq n, m$ and $(p, k) \notin \Lambda$ such that $(n, i) \searrow(p, k)$ and $(m, j) \searrow(p, k)$.

Primitive ideals in \mathcal{A}

A (two-sided norm-closed) ideal $I \subset \mathcal{A}$ is primitive if and only if there are not ideals I_{1}, I_{2} in \mathcal{A}, both different from I, such that $I=I_{1} \cap I_{2}$.

In terms of the diagram Λ determining I, this means that if $(n, i),(m, j) \notin \Lambda$, then there are $p \geq n, m$ and $(p, k) \notin \Lambda$ such that $(n, i) \searrow(p, k)$ and $(m, j) \searrow(p, k)$.

$$
(n, i)
$$

Primitive ideals in \mathcal{A}

A (two-sided norm-closed) ideal $I \subset \mathcal{A}$ is primitive if and only if there are not ideals I_{1}, I_{2} in \mathcal{A}, both different from I, such that $I=I_{1} \cap I_{2}$.

In terms of the diagram Λ determining I, this means that if $(n, i),(m, j) \notin \Lambda$, then there are $p \geq n, m$ and $(p, k) \notin \Lambda$ such that $(n, i) \searrow(p, k)$ and $(m, j) \searrow(p, k)$.

$$
(n, i)
$$

Primitive ideals in \mathcal{A}

A (two-sided norm-closed) ideal $I \subset \mathcal{A}$ is primitive if and only if there are not ideals I_{1}, I_{2} in \mathcal{A}, both different from I, such that $I=I_{1} \cap I_{2}$.

In terms of the diagram Λ determining I, this means that if $(n, i),(m, j) \notin \Lambda$, then there are $p \geq n, m$ and $(p, k) \notin \Lambda$ such that $(n, i) \searrow(p, k)$ and $(m, j) \searrow(p, k)$.

$$
(n, i)
$$

Primitive ideals in \mathcal{A}

A (two-sided norm-closed) ideal $I \subset \mathcal{A}$ is primitive if and only if there are not ideals I_{1}, I_{2} in \mathcal{A}, both different from I, such that $I=I_{1} \cap I_{2}$.

In terms of the diagram Λ determining I, this means that if $(n, i),(m, j) \notin \Lambda$, then there are $p \geq n, m$ and $(p, k) \notin \Lambda$ such that $(n, i) \searrow(p, k)$ and $(m, j) \searrow(p, k)$.

Ideals and invariant sets

- Ideals of an AF algebra correspond to closed invariant sets of the Bratteli-Vershik transformation on the path space of the diagram.

Ideals and invariant sets

- Ideals of an AF algebra correspond to closed invariant sets of the Bratteli-Vershik transformation on the path space of the diagram.
- Primitive ideals of an AF algebra correspond to topologically transitive closed invariant sets of the Bratteli-Vershik transformation on the path space of the diagram.

The orbit of $1 / 3 \sim 001001001001 \ldots$

Adic Systems and Symbolic Dynamics

LSturmian Systems

-Adics in the Farey diagram and ideals in the algebra

Mapping $1 / 3 \sim 001001001001 \ldots$

Adic Systems and Symbolic Dynamics

LSturmian Systems

-Adics in the Farey diagram and ideals in the algebra

Mapping $1 / 3 \sim 001001001001 \ldots$

$$
\frac{1}{1}
$$

Adic Systems and Symbolic Dynamics

ᄂSturmian Systems

- Adics in the Farey diagram and ideals in the algebra

Mapping $1 / 3 \sim 001001001001 \ldots$

An orbit forward asymptotic to that of $1 / 3$

An orbit forward asymptotic to that of $1 / 3$

$$
l_{\frac{0}{2}}^{\frac{0}{2}}
$$

An orbit forward asymptotic to that of $1 / 3$

An orbit forward asymptotic to that of $1 / 3$

An orbit forward asymptotic to that of $1 / 3$

$$
l_{\frac{0}{2}}^{\frac{0}{2}}
$$

The diagram (non-red) of one ideal for $1 / 3 \sim 001$

The diagram (non-red) of another ideal for $1 / 3 \sim 001$

Adic Systems and Symbolic Dynamics

ᄂSturmian Systems

- Adics in the Farey diagram and ideals in the algebra

Ideal and orbit closure for $\theta=[2,3,2,4, \ldots]$

- P. Dartnell, F. Durand, and A. Maass (Studia Math.2000) computed the dimension groups of Sturmian subshifts and showed that two Sturmian subshifts are orbit equivalent if and only if they are topologically conjugate.
- P. Dartnell, F. Durand, and A. Maass (Studia Math.2000) computed the dimension groups of Sturmian subshifts and showed that two Sturmian subshifts are orbit equivalent if and only if they are topologically conjugate.
- What further insight into the much-studied class of Sturmian subshifts might be gained from the adic viewpoint?

β-shifts

- Fix $\beta>1$, let $d=\lceil\beta\rceil$, and $D=\{0,1, \ldots, d-1\}$.
- Let $\Sigma_{\beta}^{+} \subset D^{\mathbb{N}}$ denote the closure of the set of all greedy expansions base β of all $x \in[0,1]$,

$$
x=\frac{a_{1}}{\beta}+\frac{a_{2}}{\beta^{2}}+\ldots
$$

- $\left(\Sigma_{\beta}^{+}, \sigma\right)$ is a symbolic coding (lift) of the β-transformation $T_{\beta}:[0,1] \rightarrow[0,1]$ defined by $T_{\beta} x=\beta x \bmod 1$.
- If the expansion $a_{1} a_{2} \ldots$ of 1 base β is nonterminating, we put $e_{\beta}(1)=a_{1} a_{2} \ldots$.
- Otherwise there is a first i for which $T_{\beta}^{i} 1=n \in \mathbb{N}$, and then we put $e_{\beta}(1)=\left[a_{1} \ldots a_{i-1}(n-1)\right]^{\infty}$.

β-shifts and lexicographic order

- A sequence $a=a_{1} a_{2} \cdots \in D^{\mathbb{N}}$ is in Σ_{β}^{+}if and only if $\sigma^{k} x \leq e_{\beta}(1)$ for all $k \geq 0$.
- A sequence $a=a_{1} a_{2} \cdots \in D^{\mathbb{N}}$ is $e_{\beta}(1)$ for some β if and only if it dominates all its shifts: $a \geq \sigma^{k} a$ for all $k \geq 0$ (Parry, 1960).

A map of the interval

- Return now to a Sturmian symbolic dynamical system with rotation number θ. It also has a lexicographically maximal element.
- This maximal element, $M(\theta)=\left(1_{[0, \theta)}(n(1-\theta))\right)$, is obtained from the Farey diagram of blocks by switching 0 's and 1 's (and θ with $1-\theta$).
- Since $M(\theta)$ is lexicographically maximal in a subshift, it dominates all its shifts and hence is the expansion $e_{\beta}(1)$ of 1 base β for some $\beta=\beta(\theta) \in(1,2)$.
- We define $L:(0,1] \rightarrow(0,1]$ by $L(\theta)=\beta(\theta)-1$.

The map L

- The map $L:(0,1] \rightarrow(0,1]$ is strictly increasing.
- This is because $\beta \rightarrow e_{\beta}(1)$ is strictly increasing and each row of the Farey diagram of blocks is strictly increasing.
- Then we switch 0 's and 1 's, and θ and $1-\theta$.
- For $\theta=1 / 3$, the minimal element is $001001001 \ldots$, the maximal element is $M(\theta)=100100100 \cdots=\left(1_{[0,1 / 3)}(n \times 2 / 3)\right)$, and $\beta(\theta)$ is the reciprocal of the solution of $1=x+x^{4}+x^{7}+\ldots$, i.e. $1=x+x^{3}$.
- For $\theta=2 / 3$, the minimal element is $011011011 \ldots$, the maximal element is $M(\theta)=110110110 \cdots=\left(1_{[0,2 / 3)}(n \times 1 / 3)\right)$, and $\beta(\theta)$ is the reciprocal of the solution of $1=\left(x+x^{2}\right)\left(1+x^{3}+\ldots\right)$, i.e. $1=x+x^{2}+x^{3}$.
- So $\beta(1 / 3)<\beta(2 / 3)$

Some values of L

- $L(1 / 2)$ is the solution α of $x+x^{2}=1$.
- $L(\mathbb{Q}) \subset$ algebraic numbers.
- $M(\alpha)=1 f$, where f is the fixed point of the Fibonacci substitution $0 \rightarrow 01,1 \rightarrow 0$.
- The 1999 thesis of Kimberly Johnson gives (among other things) an algorithm for finding the maximal elements in substitution subshifts.
- $L(\alpha)$ is transcendental (Chi and Kwon, 2004).
- Since the mapping L connects the lexicographic order properties of Sturmian systems and β-shifts (and the interval), it may be interesting to develop further its properties and those of the dynamical system it defines.
- In recent papers and preprints, DoYong Kwon has defined and studied essentially the same function.

