Generalization of Neural Complexity to Dynamical Systems

Karl Petersen and Benjamin Wilson

University of North Carolina at Chapel Hill

University of Paris 6 June 16, 2015

Two viewpoints

Contrasting viewpoints of brain organization in higher vertebrates:

- 1. Emphasis on specificity and modularity (functional segregation)
- 2. Emphasis on global functions and mass actions (integration in perception and behavior)

Neural Complexity (G. Edelman, O. Sporns, G. Tononi, 1994)

- Neither view alone adequately accounts for interactions that occur during brain activity.
- So they propose a general measure that encompasses these fundamental aspects of brain organization.
- High values are associated with non-trivial organization of the network. This is the case when segregation coexists with integration.
- Low values are associated with systems that are either completely independent (segregated, disordered) or completely dependent (integrated, ordered).

Mutual Information

Entropy of a random variable X taking values in a discrete set E:

$$H(X) = -\sum_{x \in E} \Pr\{X = x\} \log \Pr\{X = x\}.$$

Mutual information between random variables X and Y over the same probability space:

$$MI(X, Y) = H(X) + H(Y) - H(X, Y).$$

= $H(X) - H(X|Y) = H(Y) - H(Y|X)$

- MI(X, Y) is a measure of how much Y tells about X (equivalently, how much X tells about Y)
- $MI(X, Y) = 0 \Leftrightarrow X$ and Y are independent

Some notation:

•
$$n^* = \{0, 1..., n-1\}$$

X = {X_i : i ∈ n*} a family of random variables representing an isolated neural system with n elementary components (neuronal groups)

▶ For
$$S \subset n^*$$
, $X_S = \{X_i : i \in S\}$

►
$$S^{c} = n^{*} \setminus S$$
.

Some notation:

•
$$n^* = \{0, 1..., n-1\}$$

X = {X_i : i ∈ n*} a family of random variables representing an isolated neural system with n elementary components (neuronal groups)

▶ For
$$S \subset n^*$$
, $X_S = \{X_i : i \in S\}$

►
$$S^{c} = n^{*} \setminus S$$
.

Neural Complexity, C_N

Average of mutual information over subfamilies of a family of random variables

$$C_N(X) = \frac{1}{n+1} \sum_{S \subset n^*} \frac{1}{\binom{n}{|S|}} MI(X_S, X_{S^c}).$$

Intricacy (J. Buzzi, L. Zambotti, 2009)

- Give a general probabilisitic representation of neural complexity.
- Neural complexity belongs to a natural class of functionals: weighted averages of mutual information whose weights satisfy certain properties.

Intricacy (J. Buzzi, L. Zambotti, 2009)

- Give a general probabilisitic representation of neural complexity.
- Neural complexity belongs to a natural class of functionals: weighted averages of mutual information whose weights satisfy certain properties.

System of coefficients

A system of coefficients, c_S^n , is a family of numbers satisfying for all $n \in \mathbb{N}$ and $S \subset n^*$

1. $c_{S}^{n} \ge 0;$ 2. $\sum_{S \subset n^{*}} c_{S}^{n} = 1;$ 3. $c_{S^{c}}^{n} = c_{S}^{n}.$

Mutual information functional

- For a fixed n∈ N let X = {X_i : i ∈ n*} be a collection of random variables all taking values in the same finite set.
- ▶ Given a system of coefficients, cⁿ_S, the corresponding mutual information functional, J^c(X) is defined by

$$\mathbb{J}^{c}(X) = \sum_{S \subset n^{*}} c_{S}^{n} MI(X_{S}, X_{S^{c}}).$$

Mutual information functional

- For a fixed n∈ N let X = {X_i : i ∈ n*} be a collection of random variables all taking values in the same finite set.
- ▶ Given a system of coefficients, cⁿ_S, the corresponding mutual information functional, J^c(X) is defined by

$$\mathbb{J}^{\mathsf{c}}(X) = \sum_{S \subset n^*} c_S^n MI(X_S, X_{S^c}).$$

Intricacy

An *intricacy* is a mutual information functional satisfying:

- 1. Exchangeability: invariance by permutations of *n*;
- 2. Weak additivity: $\mathcal{I}^{c}(X, Y) = \mathcal{I}^{c}(X) + \mathcal{I}^{c}(Y)$ for any two independent systems $X = \{X_{i} : i \in n^{*}\}$ and $Y = \{Y_{i} : j \in m^{*}\}$.

Theorem (Buzzi, Zambotti)

Let c_S^n be a system of coefficients and \mathbb{J}^c the associated mutual information functional. \mathbb{J}^c is an intricacy if and only if there exists a symmetric probability measure λ_c on [0, 1] such that

$$c_{S}^{n} = \int_{[0,1]} x^{|S|} (1-x)^{n-|S|} \lambda_{c}(dx)$$

Theorem (Buzzi, Zambotti)

Let c_S^n be a system of coefficients and \mathfrak{I}^c the associated mutual information functional. \mathfrak{I}^c is an intricacy if and only if there exists a symmetric probability measure λ_c on [0, 1] such that

$$c_{S}^{n} = \int_{[0,1]} x^{|S|} (1-x)^{n-|S|} \lambda_{c}(dx)$$

Example

1.
$$c_{S}^{n} = \frac{1}{(n+1)} \frac{1}{\binom{n}{|S|}}$$
 (Edelman-Sporns-Tononi);
2. For $0 ,
 $c_{S}^{n} = \frac{1}{2} (p^{|S|} (1-p)^{n-|S|} + (1-p)^{|S|} p^{n-|S|})$ (*p*-symmetric);
3. For $p = 1/2$, $c_{S}^{n} = 2^{-n}$ (uniform).$

Topological dynamical system, (X, T)

► X a compact Hausdorff (often metric) space;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $T: X \to X$ a homeomorphism.

Topological dynamical system, (X, T)

- ► X a compact Hausdorff (often metric) space;
- $T: X \to X$ a homeomorphism.

For an open cover \mathcal{U} of X, denote by $N(\mathcal{U})$, the minimum cardinality of the subcovers of \mathcal{U} .

Topological dynamical system, (X, T)

- ► X a compact Hausdorff (often metric) space;
- $T: X \to X$ a homeomorphism.

For an open cover \mathcal{U} of X, denote by $N(\mathcal{U})$, the minimum cardinality of the subcovers of \mathcal{U} .

Definition (Adler, Konheim, McAndrew, 1965) The *topological entropy* of (X, T) is defined by

$$h_{top}(X, T) = \sup_{\mathfrak{U}} \lim_{n \to \infty} \frac{1}{n} \log N(\mathfrak{U} \vee T^{-1}\mathfrak{U} \vee \cdots \vee T^{-n+1}\mathfrak{U}).$$

Topological entropy is a measure of the amount of randomness or disorder in a system.

Let (X, T) be a topological dynamical system and \mathcal{U} an open cover of X. Given $n \in \mathbb{N}$ and a subset $S \subset n^*$ define

$$\mathfrak{U}_{\mathcal{S}}=\bigvee_{i\in\mathcal{S}}T^{-i}\mathfrak{U}.$$

Definition (P-W)

Let c_S^n be a system of coefficients. Define the *topological intricacy* of (X, T) with respect to the open cover \mathcal{U} to be

$$\operatorname{Int}(X, \mathcal{U}, T) := \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log\left(\frac{N(\mathcal{U}_S)N(\mathcal{U}_{S^c})}{N(\mathcal{U}_{n^*})}\right)$$

.

 $Int(X, \mathcal{U}, T) = 2 \operatorname{Asc}(X, \mathcal{U}, T) - h_{\operatorname{top}}(X, \mathcal{U}, T).$

<□ > < @ > < E > < E > E のQ @

$$Int(X, \mathcal{U}, T) = 2 \operatorname{Asc}(X, \mathcal{U}, T) - h_{\operatorname{top}}(X, \mathcal{U}, T).$$

Definition (P-W)

The topological average sample complexity of T with respect to the open cover \mathcal{U} is defined to be

$$\operatorname{Asc}(X, \mathfrak{U}, T) := \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N(\mathfrak{U}_S).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The limits in the definitions of Int(X, U, T) and Asc(X, U, T) exist. The proof is based on subadditivity of the sequence

$$b_n := \sum_{S \subset n^*} c_S^n \log N(\mathcal{U}_S)$$

and Fekete's Subadditive Lemma: for every subadditive sequence a_n , the limit $\lim_{n\to\infty} a_n/n$ exists and is equal to $\inf_n a_n/n$.

The limits in the definitions of $Int(X, \mathcal{U}, T)$ and $Asc(X, \mathcal{U}, T)$ exist. The proof is based on subadditivity of the sequence

$$b_n := \sum_{S \subset n^*} c_S^n \log N(\mathcal{U}_S)$$

and Fekete's Subadditive Lemma: for every subadditive sequence a_n , the limit $\lim_{n\to\infty} a_n/n$ exists and is equal to $\inf_n a_n/n$.

Proposition

For each open cover \mathfrak{U} , Asc $(X, \mathfrak{U}, T) \leq h_{top}(X, \mathfrak{U}, T) \leq h_{top}(X, T)$, and hence Int $(X, \mathfrak{U}, T) \leq h_{top}(X, \mathfrak{U}, T) \leq h_{top}(X, T)$.

In particular, a dynamical system with zero (or relatively low) topological entropy (integrated, ordered) has zero (or relatively low) topological intricacy.

For $r \in \mathbb{N}$ consider the finite set $\mathcal{A} = \{0, 1, \dots, r-1\}$. We call \mathcal{A} an *alphabet* and give it the discrete topology. The (two-sided) full shift space, $\Sigma(\mathcal{A})$, is defined as

$$\Sigma(\mathcal{A}) = \mathcal{A}^{\mathbb{Z}} = \{x = (x_i)_{-\infty}^{\infty} : x_i \in \mathcal{A} \text{ for each } i\},\$$

and is given the product topology. The shift transformation $\sigma:\Sigma(\mathcal{A})\to\Sigma(\mathcal{A})$ is defined by

$$(\sigma x)_i = x_{i+1}$$
 for $-\infty < i < \infty$,

Definition

A subshift is a pair (X, σ) where $X \subset \Sigma(\mathcal{A})$ is a nonempty, closed, shift-invariant $(\sigma X = X)$ set.

A *block* or *word* is an element of \mathcal{A}^k for k = 0, 1, 2..., i.e. a finite string on the alphabet \mathcal{A} .

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Denote the set of words of length *n* in a subshift X by $\mathcal{L}_n(X)$.

A *block* or *word* is an element of \mathcal{A}^k for k = 0, 1, 2..., i.e. a finite string on the alphabet \mathcal{A} .

Denote the set of words of length *n* in a subshift X by $\mathcal{L}_n(X)$.

For a subset $S \subset n^*$, $S = \{s_0, s_1, \ldots, s_{|S|-1}\}$, denote the set of words we can see at the places in S for all words in $\mathcal{L}_n(X)$ by $\mathcal{L}_S(X)$,

 $\mathcal{L}_{S}(X) = \{ w_{s_{0}} w_{s_{1}} \dots w_{s_{|S|-1}} : w = w_{0} w_{1} \dots w_{n-1} \in \mathcal{L}_{n}(X) \}.$

Notice $\mathcal{L}_{n^*}(X) = \mathcal{L}_n(X)$.

- ► A shift of finite type (SFT) is defined by specifying a finite collection, *F*, of forbidden words on a given alphabet, *A* = {0, 1, ..., r}.
- Define X_F ⊂ Σ_r to be the set of all sequences none of whose words are in F.

・ロト・日本・モート モー うへぐ

- ► A shift of finite type (SFT) is defined by specifying a finite collection, *F*, of forbidden words on a given alphabet, *A* = {0, 1, ..., r}.
- ▶ Define X_F ⊂ Σ_r to be the set of all sequences none of whose words are in F.

Example

Let $\mathcal{A} = \{0, 1\}$ and $\mathcal{F} = \{11\}$. $(X_{\mathcal{F}}, \sigma)$ is called the *golden mean shift*.

Adjacency Matrix	Graph	_
$\left(\begin{array}{rrr}1&1\\1&0\end{array}\right)$		

Intricacy of a subshift, X

$$\operatorname{Int}(X, \mathfrak{U}_0, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log \left(\frac{|\mathcal{L}_S(X)| |\mathcal{L}_{S^c}(X)|}{|\mathcal{L}_{n^*}(X)|} \right)$$

Intricacy of a subshift, X

$$\operatorname{Int}(X, \mathfrak{U}_0, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log \left(\frac{|\mathcal{L}_S(X)| |\mathcal{L}_{S^c}(X)|}{|\mathcal{L}_{n^*}(X)|} \right)$$

Example (Computing $|\mathcal{L}_S(X)|$ for the golden mean sft) Let n = 3, $n^* = \{0, 1, 2\}$.

$S = \{0, 1\}$	<i>S</i> = {0, 2}		
0 0 0 1 1 0	$\begin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$		
$ \mathcal{L}_{\mathcal{S}}(X) = 3$	$ \mathcal{L}_{\mathcal{S}}(X) = 4$		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example (Computing $|\mathcal{L}_{\mathcal{S}}(X)|$ for the golden mean sft)

S	Sc	$ \mathcal{L}_{S}(X) $	$ \mathcal{L}_{S^{c}}(X) $
Ø	$\{0, 1, 2\}$	1	5
{0}	{1, 2}	2	3
$\{1\}$	{0, 2}	2	4
{2}	{0, 1}	2	3
$\{0, 1\}$	{2}	3	2
{0, 2}	$\{1\}$	4	2
$\{1, 2\}$	{0}	3	2
$\{0, 1, 2\}$	Ø	5	1

<□ > < @ > < E > < E > E のQ @

Example (Computing $|\mathcal{L}_{\mathcal{S}}(X)|$ for the golden mean sft)

S	Sc	$ \mathcal{L}_{S}(X) $	$ \mathcal{L}_{\mathcal{S}^{c}}(X) $
Ø	$\{0, 1, 2\}$	1	5
{0}	$\{1, 2\}$	2	3
$\{1\}$	{0, 2}	2	4
{2}	$\{0, 1\}$	2	3
$\{0, 1\}$	{2}	3	2
{0, 2}	$\{1\}$	4	2
{1, 2}	{0}	3	2
$\{0, 1, 2\}$	Ø	5	1

$$\frac{1}{3\cdot 2^3}\sum_{\mathcal{S}\subset 3^*}\log\left(\frac{|\mathcal{L}_{\mathcal{S}}(X)||\mathcal{L}_{\mathcal{S}^c}(X)|}{|\mathcal{L}_{n^*}(X)|}\right) = \frac{1}{24}\log\left(\frac{6^4\cdot 8^2}{5^6}\right) \approx 0.070$$

<□ > < @ > < E > < E > E のQ @

Let X be a shift of finite type with adjacency matrix M such that $M^2 > 0$. Let $c_S^n = 2^{-n}$ for all S. Then

$$\operatorname{Asc}(X, \mathcal{U}_0, \sigma) = \frac{1}{4} \sum_{k=1}^{\infty} \frac{\log |\mathcal{L}_{k^*}(X)|}{2^k}.$$

Asc is sensitive to word counts of all lengths, so is a finer measurement than h_{top} , which just gives the asymptotic exponential growth rate.

Let X be a shift of finite type with adjacency matrix M such that $M^2 > 0$. Let $c_S^n = 2^{-n}$ for all S. Then

$$\operatorname{Asc}(X, \mathfrak{U}_0, \sigma) = \frac{1}{4} \sum_{k=1}^{\infty} \frac{\log |\mathcal{L}_{k^*}(X)|}{2^k}.$$

Asc is sensitive to word counts of all lengths, so is a finer measurement than h_{top} , which just gives the asymptotic exponential growth rate.

Proof idea: Most subsets $S \subset n^*$ are also subsets of $(n-1)^*$.

Let X be a shift of finite type with adjacency matrix M such that $M^2 > 0$. Let $c_S^n = 2^{-n}$ for all S. Then

$$\mathsf{Asc}(X, \mathcal{U}_0, \sigma) = \frac{1}{4} \sum_{k=1}^{\infty} \frac{\log |\mathcal{L}_{k^*}(X)|}{2^k}.$$

Asc is sensitive to word counts of all lengths, so is a finer measurement than h_{top} , which just gives the asymptotic exponential growth rate.

Proof idea: Most subsets $S \subset n^*$ are also subsets of $(n-1)^*$.

Corollary

For the full r-shift with $c_S^n = 2^{-n}$ for all S,

$$\operatorname{Asc}(\Sigma_r, \mathfrak{U}_0, \sigma) = \frac{\log r}{2}$$
 and $\operatorname{Int}(\Sigma_r, \mathfrak{U}_0, \sigma) = 0$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_S^n = 2^{-n}$. Then

$$\sup_{\mathcal{U}} \operatorname{Asc}(X, \mathcal{U}, T) = h_{\operatorname{top}}(X, T).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_S^n = 2^{-n}$. Then

$$\sup_{\mathcal{U}} \operatorname{Asc}(X, \mathcal{U}, T) = h_{\operatorname{top}}(X, T).$$

► The proof depends on the structure of average subsets of n* = {0, 1, ..., n − 1}.

Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_S^n = 2^{-n}$. Then

$$\sup_{\mathcal{U}} \operatorname{Asc}(X, \mathcal{U}, T) = h_{\operatorname{top}}(X, T).$$

- ► The proof depends on the structure of average subsets of n* = {0, 1, ..., n − 1}.
- Most $S \subset n^*$ have size about n/2, so are not too sparse.

Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_S^n = 2^{-n}$. Then

$$\sup_{\mathcal{U}} \operatorname{Asc}(X, \mathcal{U}, T) = h_{\operatorname{top}}(X, T).$$

- ► The proof depends on the structure of average subsets of n* = {0, 1, ..., n − 1}.
- Most $S \subset n^*$ have size about n/2, so are not too sparse.
- In ordinary topological entropy of a subshift, using the time-0 partition (or open cover) α, when we replace α by α_{k*} = α₀^{k-1} in counting the number of cells or calculating the entropy of the refined partition, instead of α_{n*}, we are looking at α_{(n+k)*}, and when k is fixed, as n grows the result is the same.

Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_S^n = 2^{-n}$. Then

$$\sup_{\mathcal{U}} \operatorname{Asc}(X, \mathcal{U}, T) = h_{\operatorname{top}}(X, T).$$

- ► The proof depends on the structure of average subsets of n* = {0, 1, ..., n − 1}.
- Most $S \subset n^*$ have size about n/2, so are not too sparse.
- ▶ In ordinary topological entropy of a subshift, using the time-0 partition (or open cover) α , when we replace α by $\alpha_{k^*} = \alpha_0^{k-1}$ in counting the number of cells or calculating the entropy of the refined partition, instead of α_{n^*} , we are looking at $\alpha_{(n+k)^*}$, and when k is fixed, as n grows the result is the same.
- When we code by k-blocks, S ⊂ n* is replaced by S + k*, and the effect on α_{S+k*} as compared to α_S is similar, since it acts similarly on each of the long subintervals comprising S.

Fix a k for coding by k-blocks (or looking at N((U_k)_S) or H((α_k)_S)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fix a k for coding by k-blocks (or looking at N((U_k)_S) or H((α_k)_S)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Cut n^* into consecutive blocks of length k/2.

- Fix a k for coding by k-blocks (or looking at N((U_k)_S) or H((α_k)_S)).
- Cut n^* into consecutive blocks of length k/2.
- When s ∈ S is in one of these intervals of length k/2, then s + k* covers the next interval of length k/2.

- Fix a k for coding by k-blocks (or looking at N((U_k)_S) or H((α_k)_S)).
- Cut n^* into consecutive blocks of length k/2.
- When s ∈ S is in one of these intervals of length k/2, then s + k* covers the next interval of length k/2.
- So if S hits many of the intervals of length k/2, then S + k^{*} starts to look like a union of long intervals, say each with |E_j| > k.

k/2

 s_1

- Fix a k for coding by k-blocks (or looking at N((U_k)_S) or H((α_k)_S)).
- Cut n^* into consecutive blocks of length k/2.
- When s ∈ S is in one of these intervals of length k/2, then s + k* covers the next interval of length k/2.
- So if S hits many of the intervals of length k/2, then S + k^{*} starts to look like a union of long intervals, say each with |E_j| > k.
- By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.

k/2

 s_1

- Fix a k for coding by k-blocks (or looking at N((U_k)_S) or H((α_k)_S)).
- Cut n^* into consecutive blocks of length k/2.
- When s ∈ S is in one of these intervals of length k/2, then s + k* covers the next interval of length k/2.
- So if S hits many of the intervals of length k/2, then S + k^{*} starts to look like a union of long intervals, say each with |E_j| > k.
- By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.

- Fix a k for coding by k-blocks (or looking at N((U_k)_S) or H((α_k)_S)).
- Cut n^* into consecutive blocks of length k/2.
- When s ∈ S is in one of these intervals of length k/2, then s + k* covers the next interval of length k/2.
- So if S hits many of the intervals of length k/2, then S + k^{*} starts to look like a union of long intervals, say each with |E_j| > k.
- By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.

- Fix a k for coding by k-blocks (or looking at N((U_k)_S) or H((α_k)_S)).
- Cut n^* into consecutive blocks of length k/2.
- When s ∈ S is in one of these intervals of length k/2, then s + k* covers the next interval of length k/2.
- So if S hits many of the intervals of length k/2, then S + k^{*} starts to look like a union of long intervals, say each with |E_j| > k.
- By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.

- Fix a k for coding by k-blocks (or looking at N((U_k)_S) or H((α_k)_S)).
- Cut n^* into consecutive blocks of length k/2.
- When s ∈ S is in one of these intervals of length k/2, then s + k* covers the next interval of length k/2.
- So if S hits many of the intervals of length k/2, then S + k^{*} starts to look like a union of long intervals, say each with |E_j| > k.
- By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.

$$0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)} - h_{\operatorname{top}}(X, \sigma) < \epsilon.$$

$$0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)} - h_{\operatorname{top}}(X, \sigma) < \varepsilon.$$

We let 𝔅 denote the set of S ⊂ n^{*} which miss at least 2nε/k of the intervals of length k/2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)} - h_{\operatorname{top}}(X, \sigma) < \varepsilon.$$

We let 𝔅 denote the set of S ⊂ n* which miss at least 2ne/k of the intervals of length k/2
 and show that lim_{n→∞} card(𝔅)/2ⁿ = 0.

$$0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)} - h_{\operatorname{top}}(X, \sigma) < \varepsilon.$$

- We let 𝔅 denote the set of S ⊂ n^{*} which miss at least 2nε/k of the intervals of length k/2
- ▶ and show that $\lim_{n\to\infty} \frac{\operatorname{card}(\mathfrak{B})}{2^n} = 0.$
- ▶ If $S \notin \mathfrak{B}$, then S hits many of the intervals of length k/2,

$$0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)} - h_{\operatorname{top}}(X, \sigma) < \varepsilon.$$

- We let 𝔅 denote the set of S ⊂ n^{*} which miss at least 2nε/k of the intervals of length k/2
- ▶ and show that $\lim_{n\to\infty} \frac{\operatorname{card}(\mathfrak{B})}{2^n} = 0.$
- If $S \notin \mathfrak{B}$, then S hits many of the intervals of length k/2,
- and hence S + k* is the union of intervals of length at least k, and we can arrange that the gaps are also long enough to satisfy the above estimate comparing to h_{top}(X, σ).

Measure-theoretic dynamical systems

Measure-theoretic dynamical system (X, \mathcal{B} , μ , T)

- X is a measure space
- \mathcal{B} is a σ -algebra of measurable subsets of X
- μ is a probability measure on X, i.e., $\mu(X) = 1$
- $T: X \to X$ is a measure-preserving transformation on X, i.e., T is a one-to-one onto map such that $\mu(T^{-1}E) = \mu(E)$ for all $E \in \mathcal{B}$

Measure-theoretic dynamical systems

Measure-theoretic dynamical system (X, \mathcal{B} , μ , T)

- X is a measure space
- \mathcal{B} is a σ -algebra of measurable subsets of X
- μ is a probability measure on X, i.e., $\mu(X) = 1$
- $T: X \to X$ is a measure-preserving transformation on X, i.e., T is a one-to-one onto map such that $\mu(T^{-1}E) = \mu(E)$ for all $E \in \mathcal{B}$

Entropy of a partition

The entropy of a finite measurable partition $\alpha = \{A_1, \ldots, A_n\}$ of X is defined by

$$H_{\mu}(\alpha) = -\sum_{i=1}^{n} \mu(A_i) \log \mu(A_i).$$

Definition

The entropy of X and T with respect to μ and a partition α is

$$h_{\mu}(X, \alpha, T) = \lim_{n \to \infty} \frac{1}{n} H_{\mu}(\alpha \vee T^{-1} \alpha \vee \cdots \vee T^{-n+1} \alpha).$$

The entropy of the transformation T is defined to be

$$h_{\mu}(X, T) = \sup_{\alpha} h_{\mu}(X, \alpha, T).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For a partition α of X and a subset $S \subset n^*$ define

$$\alpha_S = \bigvee_{i \in S} T^{-i} \alpha.$$

<□ > < @ > < E > < E > E のQ @

For a partition α of X and a subset $S \subset n^*$ define

$$\alpha_{S} = \bigvee_{i \in S} T^{-i} \alpha.$$

Definition (P-W)

Let (X, \mathcal{B}, μ, T) be a measure-preserving system, $\alpha = \{A_1, \ldots, A_n\}$ a finite measurable partition of X, and c_S^n a system of coefficients. The measure-theoretic intricacy of T with respect to the partition α is

$$\operatorname{Int}_{\mu}(X, \alpha, T) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \left[H_{\mu}(\alpha_S) + H_{\mu}(\alpha_{S^c}) - H_{\mu}(\alpha_{n^*}) \right].$$

For a partition α of X and a subset $S \subset n^*$ define

$$\alpha_S = \bigvee_{i \in S} T^{-i} \alpha.$$

Definition (P-W)

Let (X, \mathcal{B}, μ, T) be a measure-preserving system, $\alpha = \{A_1, \ldots, A_n\}$ a finite measurable partition of X, and c_S^n a system of coefficients. The measure-theoretic intricacy of T with respect to the partition α is

$$\operatorname{Int}_{\mu}(X, \alpha, T) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \left[H_{\mu}(\alpha_S) + H_{\mu}(\alpha_{S^c}) - H_{\mu}(\alpha_{n^*}) \right].$$

The measure-theoretic average sample complexity of T with respect to the partition α is

$$\operatorname{Asc}_{\mu}(X, \alpha, T) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n H_{\mu}(\alpha_S).$$

The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_S^n = 2^{-n}$. Then

$$\sup_{\alpha} \operatorname{Asc}_{\mu}(X, \alpha, T) = h_{\mu}(X, T).$$

The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_S^n = 2^{-n}$. Then

$$\sup_{\alpha} \operatorname{Asc}_{\mu}(X, \alpha, T) = h_{\mu}(X, T).$$

The proofs are similar to those for the corresponding theorems in the topological setting.

The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_S^n = 2^{-n}$. Then

$$\sup_{\alpha} \operatorname{Asc}_{\mu}(X, \alpha, T) = h_{\mu}(X, T).$$

The proofs are similar to those for the corresponding theorems in the topological setting. These observations indicate that there may be a topological analogue of the following result.

The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_S^n = 2^{-n}$. Then

$$\sup_{\alpha} \operatorname{Asc}_{\mu}(X, \alpha, T) = h_{\mu}(X, T).$$

The proofs are similar to those for the corresponding theorems in the topological setting. These observations indicate that there may be a topological analogue of the following result.

Theorem (Ornstein-Weiss, 2007)

If J is a finitely observable functional defined for ergodic finite-valued processes that is an isomorphism invariant, then J is a continuous function of the measure-theoretic entropy. • The arguments adapt to open covers (\mathcal{U}_k) and partitions α_k .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The arguments adapt to open covers (U_k) and partitions α_k. Thanks to JPT for helpful comments that led to these proofs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The arguments adapt to open covers (U_k) and partitions α_k. Thanks to JPT for helpful comments that led to these proofs.

So it is better to examine these measures *locally*:

- The arguments adapt to open covers (U_k) and partitions α_k. Thanks to JPT for helpful comments that led to these proofs.
- So it is better to examine these measures *locally*:
- ► Fix a k and find the topological average sample complexity $Asc(X, \mathcal{U}_k, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N((\mathcal{U}_k)_S),$

- The arguments adapt to open covers (U_k) and partitions α_k. Thanks to JPT for helpful comments that led to these proofs.
- So it is better to examine these measures *locally*:
- ► Fix a k and find the topological average sample complexity $Asc(X, \mathcal{U}_k, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N((\mathcal{U}_k)_S),$
- or do not take the limit on n, and study it as a function of n,

- The arguments adapt to open covers (U_k) and partitions α_k. Thanks to JPT for helpful comments that led to these proofs.
- So it is better to examine these measures *locally*:
- ► Fix a k and find the topological average sample complexity $Asc(X, \mathcal{U}_k, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N((\mathcal{U}_k)_S),$
- ▶ or do not take the limit on *n*, and study it as a function of *n*,

 analogously to the symbolic or topological complexity functions.

- The arguments adapt to open covers (U_k) and partitions α_k. Thanks to JPT for helpful comments that led to these proofs.
- So it is better to examine these measures *locally*:
- ► Fix a k and find the topological average sample complexity $Asc(X, \mathcal{U}_k, \sigma) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N((\mathcal{U}_k)_S),$
- or do not take the limit on n, and study it as a function of n,
- analogously to the symbolic or topological complexity functions.
- Similarly for the measure-theoretic version: fix a partition α and study the limit, or the function of n.

$$\operatorname{Asc}_{\mu}(X, T, \alpha) = \lim_{n \to \infty} \frac{1}{n} \sum_{S \subset n^*} c_S^n H_{\mu}(\alpha_S).$$

So we begin study of Asc for a fixed open cover as a function of n.

$$\operatorname{Asc}(X, \sigma, \mathcal{U}_k, n) = \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N(S).$$

<□ > < @ > < E > < E > E のQ @

So we begin study of Asc for a fixed open cover as a function of n.

$$\operatorname{Asc}(X, \sigma, \mathfrak{U}_k, n) = \frac{1}{n} \sum_{S \subset n^*} c_S^n \log N(S).$$

Example

Figure: Graphs of two subshifts with the same complexity function but different average sample complexity functions.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$\operatorname{Asc}(n) = \frac{1}{n} \frac{1}{2^n} \sum_{S \subset n^*} \log N(S)$$

ASC(n)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Interesting example

These SFTs have the same entropy and complexity functions (words of length n) but different Asc and Int functions.

Results in measure-theoretic setting

For a fixed partition α , we give a relationship between Asc_µ(*X*, α , *T*) and a series summed over *i* involving the conditional entropies $H_{\mu}(\alpha \mid \alpha_i^{\infty})$.

Results in measure-theoretic setting

For a fixed partition α , we give a relationship between Asc_µ(*X*, α , *T*) and a series summed over *i* involving the conditional entropies $H_{\mu}(\alpha \mid \alpha_i^{\infty})$.

Idea

View a subset S ⊂ n* as corresponding to a random binary string of length n generated by Bernoulli measure B(1/2, 1/2) on the full 2-shift.

• For example $\{0, 2, 3\} \subset 5^* \leftrightarrow 10110$.

Results in measure-theoretic setting

For a fixed partition α , we give a relationship between Asc_µ(*X*, α , *T*) and a series summed over *i* involving the conditional entropies $H_{\mu}(\alpha \mid \alpha_i^{\infty})$.

Idea

- View a subset S ⊂ n* as corresponding to a random binary string of length n generated by Bernoulli measure B(1/2, 1/2) on the full 2-shift.
- For example $\{0, 2, 3\} \subset 5^* \leftrightarrow 10110$.
- The average entropy, H_µ(α_S), over all S ⊂ n*, is then an integral and can be interpreted in terms of the entropy of a first-return map to the cylinder A = [1] in a cross product of our system X and the full 2-shift, Σ₂.

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and α a finite measurable partition of X. Let $A = [1] = \{\xi \in \Sigma_2^+ : \xi_0 = 1\}$ and $\beta = \alpha \times A$ the related finite partition of $X \times A$. Denote by $T_{X \times A}$ the first-return map on $X \times A$ and let $P_A = P/P[1]$ denote the measure P restricted to A and normalized. Let $c_S^n = 2^{-n}$ for all $S \subset n^*$. Then

$$\operatorname{Asc}_{\mu}(X, \alpha, T) = \frac{1}{2} h_{\mu \times P_{A}}(X \times A, \beta, T_{X \times A}).$$

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and α a finite measurable partition of X. Let $A = [1] = \{\xi \in \Sigma_2^+ : \xi_0 = 1\}$ and $\beta = \alpha \times A$ the related finite partition of $X \times A$. Denote by $T_{X \times A}$ the first-return map on $X \times A$ and let $P_A = P/P[1]$ denote the measure P restricted to A and normalized. Let $c_S^n = 2^{-n}$ for all $S \subset n^*$. Then

$$\operatorname{Asc}_{\mu}(X, \alpha, T) = \frac{1}{2} h_{\mu \times P_{A}}(X \times A, \beta, T_{X \times A}).$$

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and α a finite measurable partition of X. Let $c_S^n = 2^{-n}$ for all $S \subset n^*$. Then

$$\mathsf{Asc}_{\mu}(X, \alpha, T) \geq \frac{1}{2} \sum_{i=1}^{\infty} \frac{1}{2^{i}} H_{\mu}(\alpha \mid \alpha_{i}^{\infty}).$$

Equality holds in certain cases (in particular, for Markov shifts)

In the topological case the first-return map $T_{X \times A}$ is not continuous nor expansive nor even defined on all of $X \times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply.

・ロト・日本・モート モー うへぐ

In the topological case the first-return map $T_{X \times A}$ is not continuous nor expansive nor even defined on all of $X \times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply. To maximize Int, there is the added problem of the minus sign in

$$Int(X, \mathcal{U}, T) = 2 \operatorname{Asc}(X, \mathcal{U}, T) - h_{\operatorname{top}}(X, \mathcal{U}, T).$$

・ロト・日本・モート モー うへぐ

In the topological case the first-return map $T_{X \times A}$ is not continuous nor expansive nor even defined on all of $X \times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply. To maximize Int, there is the added problem of the minus sign in

$$Int(X, \mathcal{U}, T) = 2 \operatorname{Asc}(X, \mathcal{U}, T) - h_{\operatorname{top}}(X, \mathcal{U}, T).$$

Maybe some modern work on local or relative variational principles, almost subadditive potentials, equilibrium states for shifts with infinite alphabets, etc. could apply? (Barreira, Mummert, Yayama, Cao-Feng-Huang, Huang-Ye-Zhang, Huang-Maass-Romagnoli-Ye, Cheng-Zhao-Cao, ...)

In the topological case the first-return map $T_{X \times A}$ is not continuous nor expansive nor even defined on all of $X \times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply. To maximize Int, there is the added problem of the minus sign in

$$Int(X, \mathcal{U}, T) = 2 \operatorname{Asc}(X, \mathcal{U}, T) - h_{\operatorname{top}}(X, \mathcal{U}, T).$$

Maybe some modern work on local or relative variational principles, almost subadditive potentials, equilibrium states for shifts with infinite alphabets, etc. could apply? (Barreira, Mummert, Yayama, Cao-Feng-Huang, Huang-Ye-Zhang, Huang-Maass-Romagnoli-Ye, Cheng-Zhao-Cao, ...)

But the above theorem does give up some information immediately:

Proposition

When $T: X \to X$ is an expansive homeomorphism on a compact metric space (e.g., a subshift), $Asc_{\mu}(X, T, \alpha)$ is an affine upper semicontinuous (in the weak* topology) function of μ , so the set of maximal measures for $Asc_{\mu}(X, T, \alpha)$ is nonempty, compact, and convex and contains ergodic measures (see Walters, p. 198 ff.).

Markov Shift

- Consider the measure on the shift space (Σ_n, σ) given by s stochastic matrix P = (P_{ij}) and fixed probability vector p = (p₀ p₁ ... p_{n-1}), i.e. Σ p_i = 1 and pP = p.
- ► The measure $\mu_{P,p}$ is defined as usual on cylinder sets by $\mu_{p,P}[i_0i_1 \dots i_k] = p_{i_0}P_{i_0i_1} \dots P_{i_{k-1}i_k}$.

Markov Shift

- Consider the measure on the shift space (Σ_n, σ) given by s stochastic matrix P = (P_{ij}) and fixed probability vector p = (p₀ p₁ ... p_{n-1}), i.e. Σ p_i = 1 and pP = p.
- ► The measure $\mu_{P,p}$ is defined as usual on cylinder sets by $\mu_{p,P}[i_0i_1 \dots i_k] = p_{i_0}P_{i_0i_1} \dots P_{i_{k-1}i_k}$.

Example (1-step Markov measure on the golden mean shift) Denote by $P_{00} \in [0, 1]$ the probability of going from 0 to 0 in a sequence of $X_{\{11\}} \subset \Sigma_2$. Then

$$P = \begin{pmatrix} P_{00} & 1 - P_{00} \\ 1 & 0 \end{pmatrix}, \quad p = \begin{pmatrix} \frac{1}{2 - P_{00}} & \frac{1 - P_{00}}{2 - P_{00}} \end{pmatrix}$$

Markov Shift

- Consider the measure on the shift space (Σ_n, σ) given by s stochastic matrix P = (P_{ij}) and fixed probability vector p = (p₀ p₁ ... p_{n-1}), i.e. Σ p_i = 1 and pP = p.
- ► The measure $\mu_{P,p}$ is defined as usual on cylinder sets by $\mu_{p,P}[i_0i_1 \dots i_k] = p_{i_0}P_{i_0i_1} \dots P_{i_{k-1}i_k}$.

Example (1-step Markov measure on the golden mean shift) Denote by $P_{00} \in [0, 1]$ the probability of going from 0 to 0 in a sequence of $X_{\{11\}} \subset \Sigma_2$. Then

$$P = \begin{pmatrix} P_{00} & 1 - P_{00} \\ 1 & 0 \end{pmatrix}, \quad p = \begin{pmatrix} \frac{1}{2 - P_{00}} & \frac{1 - P_{00}}{2 - P_{00}} \end{pmatrix}$$

Using the series formula and known equations for conditional entropy, we approximate Asc_{μ} and Int_{μ} for Markov measures on SFTs.

1-step Markov measures on the golden mean shift

- Maximum value of $h_{\mu} = h_{top} = \log \phi$ when $P_{00} = 1/\phi$
- Unique maxima among 1-step Markov measures for Asc_μ and Int_μ
- Maxima for Asc_{μ}, Int_{μ}, and h_{μ} achieved by different measures

2-step Markov measures on the golden mean shift

- Asc_µ appears to be strictly convex, so it would have a unique maximum among 2-step Markov measures
- Int_µ appears to have a unique maximum among 2-step Markov measures on a proper subshift (P₀₀₀ = 0)
- ► The maxima for Asc_µ, Int_µ, and h_µ are achieved by different measures

P ₀₀	P_{11}	h_{μ}	Asc_μ	Int_{μ}
0.5	0.5	0.693	0.347	0
0.216	0	0.292	0.208	0.124
0	0.216	0.292	0.208	0.124
0.905	0.905	0.315	0.209	0.104

- Asc_µ appears to be strictly convex, so it would have a unique maximum among 1-step Markov measures
- Int_µ appears to have two maxima among 1-step Markov measures on proper subshifts (P₀₀ = 0 and P₁₁ = 0).
- There seems to be a 1-step Markov measure that is fully supported and is a local maximum for Int_µ among all 1-step Markov measures.
- The maxima for Asc_μ, Int_μ, and h_μ are achieved by different measures.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

We summarize some of the questions generated above.

We summarize some of the questions generated above.

Conj. 1: On the golden mean SFT, for each r there is a unique r-step Markov measure μ_r that maximizes $Asc_{\mu}(X, \sigma, \alpha)$ among all r-step Markov measures.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We summarize some of the questions generated above. Conj. 1: On the golden mean SFT, for each *r* there is a unique *r*-step Markov measure μ_r that maximizes Asc_µ(X, σ, α) among all *r*-step Markov measures.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conj. 2: $\mu_2 \neq \mu_1$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Conj. 2: $\mu_2 \neq \mu_1$

P ₀₀	h_{μ}	Asc_μ	Int_μ
0.618	0.481	0.266	0.051
0.533	0.471	0.271	0.071
0.216	0.292	0.208	0.124

Table: Calculations for one-step Markov measures on the golden mean shift. Bolded numbers are maxima for given category.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conj. 2: $\mu_2 \neq \mu_1$

P ₀₀	h_{μ}	Asc_μ	Int_μ
0.618	0.481	0.266	0.051
0.533	0.471	0.271	0.071
0.216	0.292	0.208	0.124

Table: Calculations for one-step Markov measures on the golden mean shift. Bolded numbers are maxima for given category.

P ₀₀₀	P ₁₀₀	h_{μ}	Asc_μ	Int_μ
0.618	0.618	0.481	0.266	0.051
0.483	0.569	0.466	0.272	0.078
0	0.275	0.344	0.221	0.167

Table: Calculations for two-step Markov measures on the golden mean shift.

Conj. 3: On the golden mean SFT there is a unique measure that maximizes $Asc_{\mu}(X, T, \alpha)$. It is not Markov of any order (and of course is not the same as μ_{max}).

(ロ)、(型)、(E)、(E)、(E)、(D)、(O)、(O)

Conj. 3: On the golden mean SFT there is a unique measure that maximizes $Asc_{\mu}(X, T, \alpha)$. It is not Markov of any order (and of course is not the same as μ_{max}).

Conj. 4: On the golden mean SFT for each r there is a unique r-step Markov measure that maximizes $Int_{\mu}(X, T, \alpha)$ among all r-step Markov measures.

Conj. 3: On the golden mean SFT there is a unique measure that maximizes $Asc_{\mu}(X, T, \alpha)$. It is not Markov of any order (and of course is not the same as μ_{max}).

Conj. 4: On the golden mean SFT for each r there is a unique r-step Markov measure that maximizes $Int_{\mu}(X, T, \alpha)$ among all r-step Markov measures.

Figure: Combination of the plots of h_{μ} , Asc_{μ}, and Int_{μ} for two-step Markov measures on the golden mean shift.

<ロ> (四) (四) (三) (三) (三)

Conj. 5: On the 2-shift there are *two* 1-step Markov measures that maximize $Int_{\mu}(X, T, \alpha)$ among all 1-step Markov measures. They are supported on the golden mean SFT and its image under the dualizing map $0 \leftrightarrow 1$.

Conj. 5: On the 2-shift there are *two* 1-step Markov measures that maximize $Int_{\mu}(X, T, \alpha)$ among all 1-step Markov measures. They are supported on the golden mean SFT and its image under the dualizing map $0 \leftrightarrow 1$.

Conj. 6: On the 2-shift there is a 1-step Markov measure that is *fully supported* and is a local maximum point for $Int_{\mu}(X, T, \alpha)$ among all 1-step Markov measures.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conj. 6: On the 2-shift there is a 1-step Markov measure that is *fully supported* and is a local maximum point for $Int_{\mu}(X, T, \alpha)$ among all 1-step Markov measures.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The conjectures extend to arbitrary shifts of finite type and other dynamical systems.

The conjectures extend to arbitrary shifts of finite type and other dynamical systems.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We do not know whether a variational principle sup_μ Asc_μ(X, T, α) = Asc_{top}(X, T) holds.

- The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- We do not know whether a variational principle sup_μ Asc_μ(X, T, α) = Asc_{top}(X, T) holds.
- Analogous definitions, results, and conjectures exist when entropy is generalized to pressure, by including a potential function which measures the energy or cost associated with each configuration.

- The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- We do not know whether a variational principle sup_μ Asc_μ(X, T, α) = Asc_{top}(X, T) holds.
- Analogous definitions, results, and conjectures exist when entropy is generalized to pressure, by including a potential function which measures the energy or cost associated with each configuration.
- First one can consider a function of just a single coordinate that gives the value of each symbol.

- The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- We do not know whether a variational principle sup_μ Asc_μ(X, T, α) = Asc_{top}(X, T) holds.
- Analogous definitions, results, and conjectures exist when entropy is generalized to pressure, by including a potential function which measures the energy or cost associated with each configuration.
- First one can consider a function of just a single coordinate that gives the value of each symbol.
- Maximum intricacy may be useful for finding areas of high information activity, such as working regions in a brain (Edelman-Sporns-Tononi) or coding regions in genetic material (Koslicki-Thompson).

The end

The end (of this talk).

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>