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Motivation

Two viewpoints

Contrasting viewpoints of brain organization in higher vertebrates:

1. Emphasis on specificity and modularity (functional segregation)

2. Emphasis on global functions and mass actions (integration in
perception and behavior)



Neural Complexity (G. Edelman, O. Sporns, G. Tononi, 1994)

I Neither view alone adequately accounts for interactions that
occur during brain activity.

I So they propose a general measure that encompasses these
fundamental aspects of brain organization.

I High values are associated with non-trivial organization of the
network. This is the case when segregation coexists with
integration.

I Low values are associated with systems that are either
completely independent (segregated, disordered) or completely
dependent (integrated, ordered).



Mutual Information
Entropy of a random variable X taking values in a discrete set E :

H(X ) = −
∑
x∈E

Pr {X = x} logPr {X = x}.

Mutual information between random variables X and Y over the
same probability space:

MI (X ,Y ) = H(X ) + H(Y ) − H(X ,Y ).

= H(X ) − H(X |Y ) = H(Y ) − H(Y |X )

I MI (X ,Y ) is a measure of how much Y tells about X
(equivalently, how much X tells about Y )

I MI (X ,Y ) = 0⇔ X and Y are independent



Some notation:

I n∗ = {0, 1 . . . , n − 1}

I X = {Xi : i ∈ n∗} a family of random variables representing an
isolated neural system with n elementary components
(neuronal groups)

I For S ⊂ n∗, XS = {Xi : i ∈ S}

I Sc = n∗ \ S .

Neural Complexity, CN

Average of mutual information over subfamilies of a family of
random variables

CN(X ) =
1

n + 1

∑
S⊂n∗

1(
n
|S|

)MI (XS ,XSc).
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Intricacy (J. Buzzi, L. Zambotti, 2009)

I Give a general probabilisitic representation of neural
complexity.

I Neural complexity belongs to a natural class of functionals:
weighted averages of mutual information whose weights
satisfy certain properties.

System of coefficients

A system of coefficients, cnS , is a family of numbers satisfying for
all n ∈ N and S ⊂ n∗

1. cnS > 0;

2.
∑

S⊂n∗ c
n
S = 1;

3. cnSc = cnS .
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Mutual information functional

I For a fixed n ∈ N let X = {Xi : i ∈ n∗} be a collection of
random variables all taking values in the same finite set.

I Given a system of coefficients, cnS , the corresponding mutual
information functional, Ic(X ) is defined by

Ic(X ) =
∑
S⊂n∗

cnSMI (XS ,XSc).

Intricacy

An intricacy is a mutual information functional satisfying:

1. Exchangeability: invariance by permutations of n;

2. Weak additivity: Ic(X ,Y ) = Ic(X ) + Ic(Y ) for any two
independent systems X = {Xi : i ∈ n∗} and Y = {Yj : j ∈ m∗}.
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Theorem (Buzzi, Zambotti)

Let cnS be a system of coefficients and Ic the associated mutual
information functional. Ic is an intricacy if and only if there exists
a symmetric probability measure λc on [0, 1] such that

cnS =

∫
[0,1]

x |S|(1 − x)n−|S|λc(dx)

Example

1. cnS =
1

(n + 1)

1(
n
|S|

) (Edelman-Sporns-Tononi);

2. For 0 < p < 1,

cnS =
1

2
(p|S|(1 − p)n−|S| + (1 − p)|S|pn−|S|) (p-symmetric);

3. For p = 1/2, cnS = 2−n (uniform).
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Topological dynamical system, (X ,T )

I X a compact Hausdorff (often metric) space;

I T : X → X a homeomorphism.

For an open cover U of X , denote by N(U), the minimum
cardinality of the subcovers of U.

Definition (Adler, Konheim, McAndrew, 1965)

The topological entropy of (X ,T ) is defined by

htop(X ,T ) = sup
U

lim
n→∞ 1

n
logN(U∨ T−1U∨ · · ·∨ T−n+1U).

Topological entropy is a measure of the amount of randomness or
disorder in a system.
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Let (X ,T ) be a topological dynamical system and U an open
cover of X . Given n ∈ N and a subset S ⊂ n∗ define

US =
∨
i∈S

T−iU.

Definition (P-W)

Let cnS be a system of coefficients. Define the topological intricacy
of (X ,T ) with respect to the open cover U to be

Int(X ,U,T ) := lim
n→∞ 1

n

∑
S⊂n∗

cnS log

(
N(US)N(USc)

N(Un∗)

)
.



Int(X ,U,T ) = 2 Asc(X ,U,T ) − htop(X ,U,T ).

Definition (P-W)

The topological average sample complexity of T with respect to
the open cover U is defined to be

Asc(X ,U,T ) := lim
n→∞ 1

n

∑
S⊂n∗

cnS logN(US).
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Theorem
The limits in the definitions of Int(X ,U,T ) and Asc(X ,U,T ) exist.

The proof is based on subadditivity of the sequence

bn :=
∑
S⊂n∗

cnS logN(US)

and Fekete’s Subadditive Lemma: for every subadditive sequence
an, the limit limn→∞ an/n exists and is equal to infn an/n.

Proposition

For each open cover U,
Asc(X ,U,T ) 6 htop(X ,U,T ) 6 htop(X ,T ), and hence
Int(X ,U,T ) 6 htop(X ,U,T ) 6 htop(X ,T ).

In particular, a dynamical system with zero (or relatively low)
topological entropy (integrated, ordered) has zero (or relatively
low) topological intricacy.
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Definition
For r ∈ N consider the finite set A = {0, 1, . . . r − 1}. We call A an
alphabet and give it the discrete topology. The (two-sided) full
shift space, Σ(A), is defined as

Σ(A) = AZ = {x = (xi )
∞
−∞ : xi ∈ A for each i },

and is given the product topology. The shift transformation
σ : Σ(A)→ Σ(A) is defined by

(σx)i = xi+1 for −∞ < i <∞,

Definition
A subshift is a pair (X ,σ) where X ⊂ Σ(A) is a nonempty, closed,
shift-invariant (σX = X ) set.



Definition
A block or word is an element of Ak for k = 0, 1, 2 . . . , i.e. a finite
string on the alphabet A.

Denote the set of words of length n in a subshift X by Ln(X ).

For a subset S ⊂ n∗, S = {s0, s1, . . . , s|S|−1}, denote the set of
words we can see at the places in S for all words in Ln(X ) by
LS(X ),

LS(X ) = {ws0ws1 . . .ws|S|−1
: w = w0w1 . . .wn−1 ∈ Ln(X )}.

Notice Ln∗(X ) = Ln(X ).
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Definition

I A shift of finite type (SFT) is defined by specifying a finite
collection, F, of forbidden words on a given alphabet,
A = {0, 1, . . . , r }.

I Define XF ⊂ Σr to be the set of all sequences none of whose
words are in F.

Example

Let A = {0, 1} and F = {11}. (XF,σ) is called the golden mean
shift.

Adjacency Matrix Graph

(
1 1
1 0

)
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Intricacy of a subshift, X

Int(X ,U0,σ) = lim
n→∞ 1

n

∑
S⊂n∗

cnS log

(
|LS(X )||LSc(X )|

|Ln∗(X )|

)

Example (Computing |LS(X )| for the golden mean sft)

Let n = 3, n∗ = {0, 1, 2}.

S = {0, 1}

0 0
0 1
1 0

S = {0, 2}

0 0
0 1
1 0
1 1

|LS(X )| = 3 |LS(X )| = 4
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Example (Computing |LS(X )| for the golden mean sft)

S Sc |LS(X )| |LSc(X )|

∅ {0, 1, 2} 1 5
{0} {1, 2} 2 3
{1} {0, 2} 2 4
{2} {0, 1} 2 3
{0, 1} {2} 3 2
{0, 2} {1} 4 2
{1, 2} {0} 3 2
{0, 1, 2} ∅ 5 1

1

3 · 23
∑
S⊂3∗

log

(
|LS(X )||LSc(X )|

|Ln∗(X )|

)
=

1

24
log

(
64 · 82

56

)
≈ 0.070
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Theorem
Let X be a shift of finite type with adjacency matrix M such that
M2 > 0. Let cnS = 2−n for all S . Then

Asc(X ,U0,σ) =
1

4

∞∑
k=1

log |Lk∗(X )|

2k
.

Asc is sensitive to word counts of all lengths, so is a finer
measurement than htop, which just gives the asymptotic
exponential growth rate.

Proof idea: Most subsets S ⊂ n∗ are also subsets of (n − 1)∗.

Corollary

For the full r -shift with cnS = 2−n for all S ,

Asc(Σr ,U0,σ) =
log r

2
and Int(Σr ,U0,σ) = 0.
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Adjacency Graph Entropy Asc Int

Disordered 0.693 0.347 0

0.481 0.286 0.090

Ordered 0 0 0



Theorem
Let (X ,T ) be a topological dynamical system and fix the system
of coefficients to be cnS = 2−n. Then

sup
U

Asc(X ,U,T ) = htop(X ,T ).

I The proof depends on the structure of average subsets of
n∗ = {0, 1, . . . , n − 1}.

I Most S ⊂ n∗ have size about n/2, so are not too sparse.
I In ordinary topological entropy of a subshift, using the time-0

partition (or open cover) α, when we replace α by
αk∗ = α

k−1
0 in counting the number of cells or calculating the

entropy of the refined partition, instead of αn∗ , we are looking
at α(n+k)∗ , and when k is fixed, as n grows the result is the
same.

I When we code by k-blocks, S ⊂ n∗ is replaced by S + k∗, and
the effect on αS+k∗ as compared to αS is similar, since it acts
similarly on each of the long subintervals comprising S .
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k/2

s1

s2

I Fix a k for coding by k-blocks (or looking at N((Uk)S) or
H((αk)S)).

I Cut n∗ into consecutive blocks of length k/2.

I When s ∈ S is in one of these intervals of length k/2, then
s + k∗ covers the next interval of length k/2.

I So if S hits many of the intervals of length k/2, then S + k∗

starts to look like a union of long intervals, say each with
|Ej | > k .

I By shaving a little off each of these relatively long intervals,
we can assume that also the gaps have length at least k .
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I Given ε > 0, we may assume k is large enough that for every
interval I ⊂ N with |I | > k/2,

0 6
logN(I )

card(I )
− htop(X ,σ) < ε.

I We let B denote the set of S ⊂ n∗ which miss at least 2nε/k
of the intervals of length k/2

I and show that lim
n→∞ card(B)

2n
= 0.

I If S /∈ B, then S hits many of the intervals of length k/2,

I and hence S + k∗ is the union of intervals of length at least k ,
and we can arrange that the gaps are also long enough to
satisfy the above estimate comparing to htop(X ,σ).
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Measure-theoretic dynamical systems

Measure-theoretic dynamical system (X ,B,µ,T )

I X is a measure space

I B is a σ-algebra of measurable subsets of X

I µ is a probability measure on X , i.e., µ(X ) = 1

I T : X → X is a measure-preserving transformation on X , i.e.,
T is a one-to-one onto map such that µ(T−1E ) = µ(E ) for
all E ∈ B

Entropy of a partition

The entropy of a finite measurable partition α = {A1, . . . ,An} of X
is defined by

Hµ(α) = −

n∑
i=1

µ(Ai ) logµ(Ai ).
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Definition
The entropy of X and T with respect to µ and a partition α is

hµ(X ,α,T ) = lim
n→∞ 1

n
Hµ(α∨ T−1α∨ · · ·∨ T−n+1α).

The entropy of the transformation T is defined to be

hµ(X ,T ) = sup
α

hµ(X ,α,T ).



For a partition α of X and a subset S ⊂ n∗ define

αS =
∨
i∈S

T−iα.

Definition (P-W)

Let (X ,B,µ,T ) be a measure-preserving system, α = {A1, . . . ,An}

a finite measurable partition of X , and cnS a system of coefficients.
The measure-theoretic intricacy of T with respect to the partition
α is

Intµ(X ,α,T ) = lim
n→∞ 1

n

∑
S⊂n∗

cnS [Hµ(αS) + Hµ(αSc) − Hµ(αn∗)] .

The measure-theoretic average sample complexity of T with
respect to the partition α is

Ascµ(X ,α,T ) = lim
n→∞ 1

n

∑
S⊂n∗

cnSHµ(αS).
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Theorem
The limits in the definitions of measure-theoretic intricacy and
measure-theoretic average sample complexity exist.

Theorem
Let (X ,B,µ,T ) be a measure-preserving system and fix the
system of coefficients cnS = 2−n. Then

sup
α

Ascµ(X ,α,T ) = hµ(X ,T ).

The proofs are similar to those for the corresponding theorems in
the topological setting.These observations indicate that there may
be a topological analogue of the following result.

Theorem (Ornstein-Weiss, 2007)

If J is a finitely observable functional defined for ergodic
finite-valued processes that is an isomorphism invariant, then J is a
continuous function of the measure-theoretic entropy.
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I The arguments adapt to open covers (Uk) and partitions αk .

Thanks to JPT for helpful comments that led to these proofs.

I So it is better to examine these measures locally:

I Fix a k and find the topological average sample complexity
Asc(X ,Uk ,σ) = limn→∞ 1

n

∑
S⊂n∗ c

n
S logN((Uk)S),

I or do not take the limit on n, and study it as a function of n,

I analogously to the symbolic or topological complexity
functions.

I Similarly for the measure-theoretic version: fix a partition α
and study the limit, or the function of n.

Ascµ(X ,T ,α) = lim
n→∞ 1

n

∑
S⊂n∗

cnSHµ(αS).
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So we begin study of Asc for a fixed open cover as a function of n.

Asc(X ,σ,Uk , n) =
1

n

∑
S⊂n∗

cnS logN(S).
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Figure: Graphs of two subshifts with the same complexity function but
different average sample complexity functions.
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Asc(n) =
1

n

1

2n

∑
S⊂n∗

logN(S)
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Interesting example

Adjacency Graph htop Asc(10) Int(10)

0.481 0.399 0.254

0.481 0.377 0.208

These SFTs have the same entropy and complexity functions
(words of length n) but different Asc and Int functions.



Results in measure-theoretic setting

For a fixed partition α, we give a relationship between
Ascµ(X ,α,T ) and a series summed over i involving the
conditional entropies Hµ(α | α∞

i ).

Idea

I View a subset S ⊂ n∗ as corresponding to a random binary
string of length n generated by Bernoulli measure B(1/2, 1/2)
on the full 2-shift.

I For example {0, 2, 3} ⊂ 5∗ ↔ 10110.

I The average entropy, Hµ(αS), over all S ⊂ n∗, is then an
integral and can be interpreted in terms of the entropy of a
first-return map to the cylinder A = [1] in a cross product of
our system X and the full 2-shift, Σ2.
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Theorem
Let (X ,B,µ,T ) be a measure-preserving system and α a finite
measurable partition of X . Let A = [1] = {ξ ∈ Σ+

2 : ξ0 = 1} and
β = α× A the related finite partition of X × A. Denote by TX×A
the first-return map on X × A and let PA = P/P[1] denote the
measure P restricted to A and normalized. Let cnS = 2−n for all
S ⊂ n∗. Then

Ascµ(X ,α,T ) =
1

2
hµ×PA

(X × A,β,TX×A).

Theorem
Let (X ,B,µ,T ) be a measure-preserving system and α a finite
measurable partition of X . Let cnS = 2−n for all S ⊂ n∗. Then

Ascµ(X ,α,T ) >
1

2

∞∑
i=1

1

2i
Hµ (α | α∞

i ) .

Equality holds in certain cases (in particular, for Markov shifts)
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In the topological case the first-return map TX×A is not
continuous nor expansive nor even defined on all of X × A in
general, so known results about measures of maximal entropy and
equilibrium states do not apply.

To maximize Int, there is the added
problem of the minus sign in

Int(X ,U,T ) = 2 Asc(X ,U,T ) − htop(X ,U,T ).

Maybe some modern work on local or relative variational principles,
almost subadditive potentials, equilibrium states for shifts with
infinite alphabets, etc. could apply? (Barreira, Mummert, Yayama,
Cao-Feng-Huang, Huang-Ye-Zhang, Huang-Maass-Romagnoli-Ye,
Cheng-Zhao-Cao, ...)
But the above theorem does give up some information immediately:

Proposition

When T : X → X is an expansive homeomorphism on a compact
metric space (e.g., a subshift), Ascµ(X ,T ,α) is an affine upper
semicontinuous (in the weak* topology) function of µ, so the set
of maximal measures for Ascµ(X ,T ,α) is nonempty, compact, and
convex and contains ergodic measures (see Walters, p. 198 ff.).
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Markov Shift

I Consider the measure on the shift space (Σn,σ) given by s
stochastic matrix P = (Pij) and fixed probability vector
p =

(
p0 p1 . . . pn−1

)
, i.e.

∑
pi = 1 and pP = p.

I The measure µP,p is defined as usual on cylinder sets by
µp,P [i0i1 . . . ik ] = pi0Pi0i1 · · ·Pik−1ik .

Example (1-step Markov measure on the golden mean shift)

Denote by P00 ∈ [0, 1] the probability of going from 0 to 0 in a
sequence of X{11} ⊂ Σ2. Then

P =

(
P00 1 − P00

1 0

)
, p =

(
1

2−P00

1−P00
2−P00

)
Using the series formula and known equations for conditional
entropy, we approximate Ascµ and Intµ for Markov measures on
SFTs.
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stochastic matrix P = (Pij) and fixed probability vector
p =

(
p0 p1 . . . pn−1

)
, i.e.

∑
pi = 1 and pP = p.

I The measure µP,p is defined as usual on cylinder sets by
µp,P [i0i1 . . . ik ] = pi0Pi0i1 · · ·Pik−1ik .

Example (1-step Markov measure on the golden mean shift)

Denote by P00 ∈ [0, 1] the probability of going from 0 to 0 in a
sequence of X{11} ⊂ Σ2. Then

P =

(
P00 1 − P00

1 0

)
, p =

(
1

2−P00

1−P00
2−P00

)
Using the series formula and known equations for conditional
entropy, we approximate Ascµ and Intµ for Markov measures on
SFTs.



1-step Markov measures on the golden mean shift
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on the golden mean shift
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P00 hµ Ascµ Intµ

0.618 0.481 0.266 0.051
0.533 0.471 0.271 0.071
0.216 0.292 0.208 0.124

I Maximum value of hµ = htop = logφ when P00 = 1/φ
I Unique maxima among 1-step Markov measures for Ascµ and

Intµ
I Maxima for Ascµ, Intµ, and hµ achieved by different measures



2-step Markov measures on the golden mean shift
Average sample complexity for two-step Markov measure

on the golden mean shift
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Intricacy for two-step Markov measure
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P000 P100 hµ Ascµ Intµ

0.618 0.618 0.481 0.266 0.051
0.483 0.569 0.466 0.272 0.078
0 0.275 0.344 0.221 0.167

I Ascµ appears to be strictly convex, so it would have a unique
maximum among 2-step Markov measures

I Intµ appears to have a unique maximum among 2-step
Markov measures on a proper subshift (P000 = 0)

I The maxima for Ascµ, Intµ, and hµ are achieved by different
measures



1-step Markov measures on the full 2-shift
Average sample complexity for one-step Markov measure

on the full 2-shift
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1-step Markov measures on the full 2-shift
Average sample complexity for one-step Markov measure

on the full 2-shift
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I Ascµ appears to be strictly convex, so it would have a unique
maximum among 1-step Markov measures

I Intµ appears to have two maxima among 1-step Markov
measures on proper subshifts (P00 = 0 and P11 = 0).

I There seems to be a 1-step Markov measure that is fully
supported and is a local maximum for Intµ among all 1-step
Markov measures.

I The maxima for Ascµ, Intµ, and hµ are achieved by different
measures.



We summarize some of the questions generated above.

Conj. 1: On the golden mean SFT, for each r there is a unique
r -step Markov measure µr that maximizes Ascµ(X ,σ,α) among
all r -step Markov measures.
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We summarize some of the questions generated above.
Conj. 1: On the golden mean SFT, for each r there is a unique
r -step Markov measure µr that maximizes Ascµ(X ,σ,α) among
all r -step Markov measures.
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Conj. 2: µ2 6= µ1

P00 hµ Ascµ Intµ

0.618 0.481 0.266 0.051
0.533 0.471 0.271 0.071
0.216 0.292 0.208 0.124

Table: Calculations for one-step Markov measures on the golden mean
shift. Bolded numbers are maxima for given category.

P000 P100 hµ Ascµ Intµ

0.618 0.618 0.481 0.266 0.051
0.483 0.569 0.466 0.272 0.078
0 0.275 0.344 0.221 0.167

Table: Calculations for two-step Markov measures on the golden mean
shift.
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Conj. 3: On the golden mean SFT there is a unique measure that
maximizes Ascµ(X ,T ,α). It is not Markov of any order (and of
course is not the same as µmax).

Conj. 4: On the golden mean SFT for each r there is a unique
r -step Markov measure that maximizes Intµ(X ,T ,α) among all
r -step Markov measures.
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Conj. 3: On the golden mean SFT there is a unique measure that
maximizes Ascµ(X ,T ,α). It is not Markov of any order (and of
course is not the same as µmax).
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Two-step Markov measure

on the golden mean shift
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Figure: Combination of the plots of hµ, Ascµ, and Intµ for two-step
Markov measures on the golden mean shift.



Conj. 5: On the 2-shift there are two 1-step Markov measures that
maximize Intµ(X ,T ,α) among all 1-step Markov measures. They
are supported on the golden mean SFT and its image under the
dualizing map 0↔ 1.
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Conj. 6: On the 2-shift there is a 1-step Markov measure that is
fully supported and is a local maximum point for Intµ(X ,T ,α)
among all 1-step Markov measures.
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Conj. 6: On the 2-shift there is a 1-step Markov measure that is
fully supported and is a local maximum point for Intµ(X ,T ,α)
among all 1-step Markov measures.
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I The conjectures extend to arbitrary shifts of finite type and
other dynamical systems.

I We do not know whether a variational principle
supµ Ascµ(X ,T ,α) = Asctop(X ,T ) holds.

I Analogous definitions, results, and conjectures exist when
entropy is generalized to pressure, by including a potential
function which measures the energy or cost associated with
each configuration.

I First one can consider a function of just a single coordinate
that gives the value of each symbol.

I Maximum intricacy may be useful for finding areas of high
information activity, such as working regions in a brain
(Edelman-Sporns-Tononi) or coding regions in genetic
material (Koslicki-Thompson).
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