Generalization of Neural Complexity to Dynamical Systems

Karl Petersen and Benjamin Wilson
University of North Carolina at Chapel Hill
University of Paris 6
June 16, 2015

Motivation

Two viewpoints
Contrasting viewpoints of brain organization in higher vertebrates:

1. Emphasis on specificity and modularity (functional segregation)
2. Emphasis on global functions and mass actions (integration in perception and behavior)

Neural Complexity (G. Edelman, O. Sporns, G. Tononi, 1994)

- Neither view alone adequately accounts for interactions that occur during brain activity.
- So they propose a general measure that encompasses these fundamental aspects of brain organization.
- High values are associated with non-trivial organization of the network. This is the case when segregation coexists with integration.
- Low values are associated with systems that are either completely independent (segregated, disordered) or completely dependent (integrated, ordered).

Mutual Information

Entropy of a random variable X taking values in a discrete set E :

$$
H(X)=-\sum_{x \in E} \operatorname{Pr}\{X=x\} \log \operatorname{Pr}\{X=x\}
$$

Mutual information between random variables X and Y over the same probability space:

$$
\begin{aligned}
M I(X, Y) & =H(X)+H(Y)-H(X, Y) \\
& =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
\end{aligned}
$$

- $\operatorname{MI}(X, Y)$ is a measure of how much Y tells about X (equivalently, how much X tells about Y)
- $\operatorname{MI}(X, Y)=0 \Leftrightarrow X$ and Y are independent

Some notation:

- $n^{*}=\{0,1 \ldots, n-1\}$
- $X=\left\{X_{i}: i \in n^{*}\right\}$ a family of random variables representing an isolated neural system with n elementary components (neuronal groups)
- For $S \subset n^{*}, X_{S}=\left\{X_{i}: i \in S\right\}$
- $S^{c}=n^{*} \backslash S$.

Some notation:

- $n^{*}=\{0,1 \ldots, n-1\}$
- $X=\left\{X_{i}: i \in n^{*}\right\}$ a family of random variables representing an isolated neural system with n elementary components (neuronal groups)
- For $S \subset n^{*}, X_{S}=\left\{X_{i}: i \in S\right\}$
- $S^{c}=n^{*} \backslash S$.

Neural Complexity, C_{N}

Average of mutual information over subfamilies of a family of random variables

$$
C_{N}(X)=\frac{1}{n+1} \sum_{S \subset n^{*}} \frac{1}{\binom{n}{|S|}} M I\left(X_{S}, X_{S^{c}}\right) .
$$

Intricacy (J. Buzzi, L. Zambotti, 2009)

- Give a general probabilisitic representation of neural complexity.
- Neural complexity belongs to a natural class of functionals: weighted averages of mutual information whose weights satisfy certain properties.

Intricacy (J. Buzzi, L. Zambotti, 2009)

- Give a general probabilisitic representation of neural complexity.
- Neural complexity belongs to a natural class of functionals: weighted averages of mutual information whose weights satisfy certain properties.

System of coefficients
A system of coefficients, c_{S}^{n}, is a family of numbers satisfying for all $n \in \mathbb{N}$ and $S \subset n^{*}$

1. $c_{S}^{n} \geqslant 0$;
2. $\sum_{S \subset n^{*}} C_{S}^{n}=1$;
3. $c_{S^{c}}^{n}=c_{S}^{n}$.

Mutual information functional

- For a fixed $n \in \mathbb{N}$ let $X=\left\{X_{i}: i \in n^{*}\right\}$ be a collection of random variables all taking values in the same finite set.
- Given a system of coefficients, c_{S}^{n}, the corresponding mutual information functional, $\mathcal{J}^{\mathcal{C}}(X)$ is defined by

$$
\mathcal{J}^{c}(X)=\sum_{S \subset n^{*}} c_{S}^{n} M I\left(X_{S}, X_{S^{c}}\right)
$$

Mutual information functional

- For a fixed $n \in \mathbb{N}$ let $X=\left\{X_{i}: i \in n^{*}\right\}$ be a collection of random variables all taking values in the same finite set.
- Given a system of coefficients, c_{S}^{n}, the corresponding mutual information functional, $\mathcal{J}^{\mathcal{C}}(X)$ is defined by

$$
\mathcal{J}^{c}(X)=\sum_{S \subset n^{*}} c_{S}^{n} M I\left(X_{S}, X_{S^{c}}\right)
$$

Intricacy

An intricacy is a mutual information functional satisfying:

1. Exchangeability: invariance by permutations of n;
2. Weak additivity: $\mathcal{J}^{\mathcal{C}}(X, Y)=\mathcal{J}^{\mathcal{C}}(X)+\mathcal{J}^{\mathcal{C}}(Y)$ for any two independent systems $X=\left\{X_{i}: i \in n^{*}\right\}$ and $Y=\left\{Y_{j}: j \in m^{*}\right\}$.

Theorem (Buzzi, Zambotti)

Let c_{S}^{n} be a system of coefficients and J^{c} the associated mutual information functional. J^{c} is an intricacy if and only if there exists a symmetric probability measure λ_{c} on $[0,1]$ such that

$$
c_{S}^{n}=\int_{[0,1]} x^{|S|}(1-x)^{n-|S|} \lambda_{c}(d x)
$$

Theorem (Buzzi, Zambotti)

Let c_{S}^{n} be a system of coefficients and J^{c} the associated mutual information functional. Jc is an intricacy if and only if there exists a symmetric probability measure λ_{c} on $[0,1]$ such that

$$
c_{S}^{n}=\int_{[0,1]} x^{|S|}(1-x)^{n-|S|} \lambda_{c}(d x)
$$

Example

1. $c_{S}^{n}=\frac{1}{(n+1)} \frac{1}{\binom{n}{|S|}}$ (Edelman-Sporns-Tononi);
2. For $0<p<1$,

$$
c_{S}^{n}=\frac{1}{2}\left(p^{|S|}(1-p)^{n-|S|}+(1-p)^{|S|} p^{n-|S|}\right)(p \text {-symmetric }) ;
$$

3. For $p=1 / 2, c_{S}^{n}=2^{-n}$ (uniform).

Topological dynamical system, (X, T)

- X a compact Hausdorff (often metric) space;
- $T: X \rightarrow X$ a homeomorphism.

Topological dynamical system, (X, T)

- X a compact Hausdorff (often metric) space;
- $T: X \rightarrow X$ a homeomorphism.

For an open cover \mathcal{U} of X, denote by $N(\mathcal{U})$, the minimum cardinality of the subcovers of \mathcal{U}.

Topological dynamical system, (X, T)

- X a compact Hausdorff (often metric) space;
- $T: X \rightarrow X$ a homeomorphism.

For an open cover \mathcal{U} of X, denote by $N(\mathcal{U})$, the minimum cardinality of the subcovers of \mathcal{U}.

Definition (Adler, Konheim, McAndrew, 1965)
The topological entropy of (X, T) is defined by

$$
h_{\text {top }}(X, T)=\sup _{\mathcal{U}} \lim _{n \rightarrow \infty} \frac{1}{n} \log N\left(\mathcal{U} \vee T^{-1} \mathcal{U} \vee \cdots \vee T^{-n+1} \mathcal{U}\right) .
$$

Topological entropy is a measure of the amount of randomness or disorder in a system.

Let (X, T) be a topological dynamical system and \mathcal{U} an open cover of X. Given $n \in \mathbb{N}$ and a subset $S \subset n^{*}$ define

$$
\mathcal{U}_{S}=\bigvee_{i \in S} T^{-i} \mathcal{U}
$$

Definition (P-W)

Let c_{S}^{n} be a system of coefficients. Define the topological intricacy of (X, T) with respect to the open cover U to be

$$
\operatorname{lnt}(X, \mathcal{U}, T):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n} \log \left(\frac{N\left(\mathcal{U}_{S}\right) N\left(\mathcal{U}_{S^{c}}\right)}{N\left(\mathcal{U}_{n^{*}}\right)}\right)
$$

$\operatorname{Int}(X, \mathcal{U}, T)=2 \operatorname{Asc}(X, \mathcal{U}, T)-h_{\text {top }}(X, \mathcal{U}, T)$.

$$
\operatorname{Int}(X, \mathcal{U}, T)=2 \operatorname{Asc}(X, \mathcal{U}, T)-h_{\text {top }}(X, \mathcal{U}, T)
$$

Definition (P-W)
The topological average sample complexity of T with respect to the open cover \mathcal{U} is defined to be

$$
\operatorname{Asc}(X, \mathcal{U}, T):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n} \log N\left(U_{S}\right)
$$

Theorem
The limits in the definitions of $\operatorname{Int}(X, \mathcal{U}, T)$ and $\operatorname{Asc}(X, \mathcal{U}, T)$ exist. The proof is based on subadditivity of the sequence

$$
b_{n}:=\sum_{S \subset n^{*}} c_{S}^{n} \log N\left(U_{S}\right)
$$

and Fekete's Subadditive Lemma: for every subadditive sequence a_{n}, the limit $\lim _{n \rightarrow \infty} a_{n} / n$ exists and is equal to $\inf _{n} a_{n} / n$.

Theorem

The limits in the definitions of $\operatorname{Int}(X, \mathcal{U}, T)$ and $\operatorname{Asc}(X, \mathcal{U}, T)$ exist. The proof is based on subadditivity of the sequence

$$
b_{n}:=\sum_{S \subset n^{*}} c_{S}^{n} \log N\left(U_{S}\right)
$$

and Fekete's Subadditive Lemma: for every subadditive sequence a_{n}, the limit $\lim _{n \rightarrow \infty} a_{n} / n$ exists and is equal to $\inf _{n} a_{n} / n$.

Proposition

For each open cover \mathcal{U}, $\operatorname{Asc}(X, \mathcal{U}, T) \leqslant h_{\text {top }}(X, \mathcal{U}, T) \leqslant h_{\text {top }}(X, T)$, and hence $\operatorname{lnt}(X, \mathcal{U}, T) \leqslant h_{\text {top }}(X, \mathcal{U}, T) \leqslant h_{\text {top }}(X, T)$.
In particular, a dynamical system with zero (or relatively low) topological entropy (integrated, ordered) has zero (or relatively low) topological intricacy.

Definition

For $r \in \mathbb{N}$ consider the finite set $\mathcal{A}=\{0,1, \ldots r-1\}$. We call \mathcal{A} an alphabet and give it the discrete topology. The (two-sided) full shift space, $\Sigma(\mathcal{A})$, is defined as

$$
\Sigma(\mathcal{A})=\mathcal{A}^{\mathbb{Z}}=\left\{x=\left(x_{i}\right)_{-\infty}^{\infty}: x_{i} \in \mathcal{A} \text { for each } i\right\}
$$

and is given the product topology. The shift transformation $\sigma: \Sigma(\mathcal{A}) \rightarrow \Sigma(\mathcal{A})$ is defined by

$$
(\sigma x)_{i}=x_{i+1} \quad \text { for }-\infty<i<\infty,
$$

Definition
A subshift is a pair (X, σ) where $X \subset \Sigma(\mathcal{A})$ is a nonempty, closed, shift-invariant $(\sigma X=X)$ set.

Definition

A block or word is an element of \mathcal{A}^{k} for $k=0,1,2 \ldots$, i.e. a finite string on the alphabet \mathcal{A}.
Denote the set of words of length n in a subshift X by $\mathcal{L}_{n}(X)$.

Definition

A block or word is an element of \mathcal{A}^{k} for $k=0,1,2 \ldots$, i.e. a finite string on the alphabet \mathcal{A}.
Denote the set of words of length n in a subshift X by $\mathcal{L}_{n}(X)$.
For a subset $S \subset n^{*}, S=\left\{s_{0}, s_{1}, \ldots, s_{|S|-1}\right\}$, denote the set of words we can see at the places in S for all words in $\mathcal{L}_{n}(X)$ by $\mathcal{L}_{S}(X)$,

$$
\mathcal{L}_{S}(X)=\left\{w_{s_{0}} w_{s_{1}} \ldots w_{s_{|S|-1}}: w=w_{0} w_{1} \ldots w_{n-1} \in \mathcal{L}_{n}(X)\right\} .
$$

Notice $\mathcal{L}_{n^{*}}(X)=\mathcal{L}_{n}(X)$.

Definition

- A shift of finite type (SFT) is defined by specifying a finite collection, \mathcal{F}, of forbidden words on a given alphabet, $\mathcal{A}=\{0,1, \ldots, r\}$.
- Define $X_{\mathcal{F}} \subset \Sigma_{r}$ to be the set of all sequences none of whose words are in \mathcal{F}.

Definition

- A shift of finite type (SFT) is defined by specifying a finite collection, \mathcal{F}, of forbidden words on a given alphabet, $\mathcal{A}=\{0,1, \ldots, r\}$.
- Define $X_{\mathcal{F}} \subset \Sigma_{r}$ to be the set of all sequences none of whose words are in \mathcal{F}.

Example

Let $\mathcal{A}=\{0,1\}$ and $\mathcal{F}=\{11\} .\left(X_{\mathcal{F}}, \sigma\right)$ is called the golden mean shift.

> Adjacency Matrix Graph

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Intricacy of a subshift, X

$$
\operatorname{lnt}\left(X, \mathcal{U}_{0}, \sigma\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n} \log \left(\frac{\left|\mathcal{L}_{S}(X)\right|\left|\mathcal{L}_{S^{c}}(X)\right|}{\left|\mathcal{L}_{n^{*}}(X)\right|}\right)
$$

Intricacy of a subshift, X

$$
\operatorname{lnt}\left(X, \mathcal{U}_{0}, \sigma\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n} \log \left(\frac{\left|\mathcal{L}_{S}(X)\right|\left|\mathcal{L}_{S^{c}}(X)\right|}{\left|\mathcal{L}_{n^{*}}(X)\right|}\right)
$$

Example (Computing $\left|\mathcal{L}_{S}(X)\right|$ for the golden mean sft)
Let $n=3, n^{*}=\{0,1,2\}$.

$$
\left.\begin{array}{l}
S=\{0,1\} \\
-\frac{-}{-}- \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right] \begin{aligned}
& \left|\mathcal{L}_{S}(X)\right|=3
\end{aligned}
$$

$$
\begin{gathered}
S=\{0,2\} \\
- \\
\hline 0
\end{gathered}
$$

Example (Computing $\left|\mathcal{L}_{S}(X)\right|$ for the golden mean sft)

S	S^{c}	$\left\|\mathcal{L}_{S}(X)\right\|$	$\left\|\mathcal{L}_{S^{c}}(X)\right\|$
\emptyset	$\{0,1,2\}$	1	5
$\{0\}$	$\{1,2\}$	2	3
$\{1\}$	$\{0,2\}$	2	4
$\{2\}$	$\{0,1\}$	2	3
$\{0,1\}$	$\{2\}$	3	2
$\{0,2\}$	$\{1\}$	4	2
$\{1,2\}$	$\{0\}$	3	2
$\{0,1,2\}$	\emptyset	5	1

Example (Computing $\left|\mathcal{L}_{S}(X)\right|$ for the golden mean sft)

$$
\begin{gathered}
\begin{array}{cccc}
\hline S & S^{c} & \left|\mathcal{L}_{S}(X)\right| & \left|\mathcal{L}_{S^{c}}(X)\right| \\
\hline \emptyset & \{0,1,2\} & 1 & 5 \\
\{0\} & \{1,2\} & 2 & 3 \\
\{1\} & \{0,2\} & 2 & 4 \\
\{2\} & \{0,1\} & 2 & 3 \\
\{0,1\} & \{2\} & 3 & 2 \\
\{0,2\} & \{1\} & 4 & 2 \\
\{1,2\} & \{0\} & 3 & 2 \\
\{0,1,2\} & \emptyset & 5 & 1 \\
\frac{1}{3 \cdot 2^{3}} \sum_{S \subset 3^{*}} \log \left(\frac{\left|\mathcal{L}_{S}(X)\right|\left|\mathcal{L}_{S^{c}}(X)\right|}{\left|\mathcal{L}_{n^{*}}(X)\right|}\right)=\frac{1}{24} \log \left(\frac{6^{4} \cdot 8^{2}}{5^{6}}\right) \approx 0.070
\end{array} .
\end{gathered}
$$

Theorem
Let X be a shift of finite type with adjacency matrix M such that $M^{2}>0$. Let $c_{S}^{n}=2^{-n}$ for all S. Then

$$
\operatorname{Asc}\left(X, \mathcal{U}_{0}, \sigma\right)=\frac{1}{4} \sum_{k=1}^{\infty} \frac{\log \left|\mathcal{L}_{k^{*}}(X)\right|}{2^{k}}
$$

Asc is sensitive to word counts of all lengths, so is a finer measurement than $h_{\text {top }}$, which just gives the asymptotic exponential growth rate.

Theorem
Let X be a shift of finite type with adjacency matrix M such that $M^{2}>0$. Let $c_{S}^{n}=2^{-n}$ for all S. Then

$$
\operatorname{Asc}\left(X, \mathcal{U}_{0}, \sigma\right)=\frac{1}{4} \sum_{k=1}^{\infty} \frac{\log \left|\mathcal{L}_{k^{*}}(X)\right|}{2^{k}}
$$

Asc is sensitive to word counts of all lengths, so is a finer measurement than $h_{\text {top }}$, which just gives the asymptotic exponential growth rate.
Proof idea: Most subsets $S \subset n^{*}$ are also subsets of $(n-1)^{*}$.

Theorem

Let X be a shift of finite type with adjacency matrix M such that $M^{2}>0$. Let $c_{S}^{n}=2^{-n}$ for all S. Then

$$
\operatorname{Asc}\left(X, \mathcal{U}_{0}, \sigma\right)=\frac{1}{4} \sum_{k=1}^{\infty} \frac{\log \left|\mathcal{L}_{k^{*}}(X)\right|}{2^{k}}
$$

Asc is sensitive to word counts of all lengths, so is a finer measurement than $h_{\text {top }}$, which just gives the asymptotic exponential growth rate.
Proof idea: Most subsets $S \subset n^{*}$ are also subsets of $(n-1)^{*}$.
Corollary
For the full r-shift with $c_{S}^{n}=2^{-n}$ for all S,

$$
\operatorname{Asc}\left(\Sigma_{r}, \mathcal{U}_{0}, \sigma\right)=\frac{\log r}{2} \quad \text { and } \quad \operatorname{Int}\left(\Sigma_{r}, \mathcal{U}_{0}, \sigma\right)=0
$$

Disordered

Theorem
Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_{S}^{n}=2^{-n}$. Then

$$
\sup _{\mathcal{U}} \operatorname{Asc}(X, \mathcal{U}, T)=h_{\text {top }}(X, T)
$$

Theorem
Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_{S}^{n}=2^{-n}$. Then

$$
\sup _{\mathcal{U}} \operatorname{Asc}(X, \mathcal{U}, T)=h_{\text {top }}(X, T)
$$

- The proof depends on the structure of average subsets of $n^{*}=\{0,1, \ldots, n-1\}$.

Theorem
Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_{S}^{n}=2^{-n}$. Then

$$
\sup _{\mathcal{U}} \operatorname{Asc}(X, \mathcal{U}, T)=h_{\text {top }}(X, T)
$$

- The proof depends on the structure of average subsets of $n^{*}=\{0,1, \ldots, n-1\}$.
- Most $S \subset n^{*}$ have size about $n / 2$, so are not too sparse.

Theorem
Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_{S}^{n}=2^{-n}$. Then

$$
\sup _{\mathcal{U}} \operatorname{Asc}(X, \mathcal{U}, T)=h_{\text {top }}(X, T)
$$

- The proof depends on the structure of average subsets of $n^{*}=\{0,1, \ldots, n-1\}$.
- Most $S \subset n^{*}$ have size about $n / 2$, so are not too sparse.
- In ordinary topological entropy of a subshift, using the time-0 partition (or open cover) α, when we replace α by $\alpha_{k^{*}}=\alpha_{0}^{k-1}$ in counting the number of cells or calculating the entropy of the refined partition, instead of $\alpha_{n^{*}}$, we are looking at $\alpha_{(n+k)^{*}}$, and when k is fixed, as n grows the result is the same.

Theorem
Let (X, T) be a topological dynamical system and fix the system of coefficients to be $c_{S}^{n}=2^{-n}$. Then

$$
\sup _{\mathcal{U}} \operatorname{Asc}(X, \mathcal{U}, T)=h_{\text {top }}(X, T)
$$

- The proof depends on the structure of average subsets of $n^{*}=\{0,1, \ldots, n-1\}$.
- Most $S \subset n^{*}$ have size about $n / 2$, so are not too sparse.
- In ordinary topological entropy of a subshift, using the time-0 partition (or open cover) α, when we replace α by $\alpha_{k^{*}}=\alpha_{0}^{k-1}$ in counting the number of cells or calculating the entropy of the refined partition, instead of $\alpha_{n^{*}}$, we are looking at $\alpha_{(n+k)^{*}}$, and when k is fixed, as n grows the result is the same.
- When we code by k-blocks, $S \subset n^{*}$ is replaced by $S+k^{*}$, and the effect on $\alpha_{S+k^{*}}$ as compared to α_{S} is similar, since it acts similarly on each of the long subintervals comprising S.
S_{1}

- Fix a k for coding by k-blocks (or looking at $N\left(\left(U_{k}\right)_{S}\right)$ or $\left.H\left(\left(\alpha_{k}\right)_{S}\right)\right)$.
S_{1}

- Fix a k for coding by k-blocks (or looking at $N\left(\left(U_{k}\right)_{S}\right)$ or $\left.H\left(\left(\alpha_{k}\right)_{s}\right)\right)$.
- Cut n^{*} into consecutive blocks of length $k / 2$.

- Fix a k for coding by k-blocks (or looking at $N\left(\left(U_{k}\right)_{S}\right)$ or $\left.H\left(\left(\alpha_{k}\right)_{S}\right)\right)$.
- Cut n^{*} into consecutive blocks of length $k / 2$.
- When $s \in S$ is in one of these intervals of length $k / 2$, then $s+k^{*}$ covers the next interval of length $k / 2$.

- Fix a k for coding by k-blocks (or looking at $N\left(\left(U_{k}\right)_{S}\right)$ or $\left.H\left(\left(\alpha_{k}\right)_{S}\right)\right)$.
- Cut n^{*} into consecutive blocks of length $k / 2$.
- When $s \in S$ is in one of these intervals of length $k / 2$, then $s+k^{*}$ covers the next interval of length $k / 2$.
- So if S hits many of the intervals of length $k / 2$, then $S+k^{*}$ starts to look like a union of long intervals, say each with $\left|E_{j}\right|>k$.

- Fix a k for coding by k-blocks (or looking at $N\left(\left(U_{k}\right)_{S}\right)$ or $\left.H\left(\left(\alpha_{k}\right) s\right)\right)$.
- Cut n^{*} into consecutive blocks of length $k / 2$.
- When $s \in S$ is in one of these intervals of length $k / 2$, then $s+k^{*}$ covers the next interval of length $k / 2$.
- So if S hits many of the intervals of length $k / 2$, then $S+k^{*}$ starts to look like a union of long intervals, say each with $\left|E_{j}\right|>k$.
- By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.

- Fix a k for coding by k-blocks (or looking at $N\left(\left(U_{k}\right)_{S}\right)$ or $\left.H\left(\left(\alpha_{k}\right) s\right)\right)$.
- Cut n^{*} into consecutive blocks of length $k / 2$.
- When $s \in S$ is in one of these intervals of length $k / 2$, then $s+k^{*}$ covers the next interval of length $k / 2$.
- So if S hits many of the intervals of length $k / 2$, then $S+k^{*}$ starts to look like a union of long intervals, say each with $\left|E_{j}\right|>k$.
- By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.

- Fix a k for coding by k-blocks (or looking at $N\left(\left(U_{k}\right)_{S}\right)$ or $\left.H\left(\left(\alpha_{k}\right) s\right)\right)$.
- Cut n^{*} into consecutive blocks of length $k / 2$.
- When $s \in S$ is in one of these intervals of length $k / 2$, then $s+k^{*}$ covers the next interval of length $k / 2$.
- So if S hits many of the intervals of length $k / 2$, then $S+k^{*}$ starts to look like a union of long intervals, say each with $\left|E_{j}\right|>k$.
- By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.

- Fix a k for coding by k-blocks (or looking at $N\left(\left(U_{k}\right)_{S}\right)$ or $\left.H\left(\left(\alpha_{k}\right) s\right)\right)$.
- Cut n^{*} into consecutive blocks of length $k / 2$.
- When $s \in S$ is in one of these intervals of length $k / 2$, then $s+k^{*}$ covers the next interval of length $k / 2$.
- So if S hits many of the intervals of length $k / 2$, then $S+k^{*}$ starts to look like a union of long intervals, say each with $\left|E_{j}\right|>k$.
- By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.

- Fix a k for coding by k-blocks (or looking at $N\left(\left(U_{k}\right)_{S}\right)$ or $\left.H\left(\left(\alpha_{k}\right) s\right)\right)$.
- Cut n^{*} into consecutive blocks of length $k / 2$.
- When $s \in S$ is in one of these intervals of length $k / 2$, then $s+k^{*}$ covers the next interval of length $k / 2$.
- So if S hits many of the intervals of length $k / 2$, then $S+k^{*}$ starts to look like a union of long intervals, say each with $\left|E_{j}\right|>k$.
- By shaving a little off each of these relatively long intervals, we can assume that also the gaps have length at least k.
- Given $\epsilon>0$, we may assume k is large enough that for every interval $I \subset \mathbb{N}$ with $|I| \geqslant k / 2$,

$$
0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)}-h_{\mathrm{top}}(X, \sigma)<\epsilon
$$

- Given $\epsilon>0$, we may assume k is large enough that for every interval $I \subset \mathbb{N}$ with $|I| \geqslant k / 2$,

$$
0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)}-h_{\mathrm{top}}(X, \sigma)<\epsilon
$$

- We let \mathfrak{B} denote the set of $S \subset n^{*}$ which miss at least $2 n \epsilon / k$ of the intervals of length $k / 2$
- Given $\epsilon>0$, we may assume k is large enough that for every interval $I \subset \mathbb{N}$ with $|I| \geqslant k / 2$,

$$
0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)}-h_{\mathrm{top}}(X, \sigma)<\epsilon
$$

- We let \mathfrak{B} denote the set of $S \subset n^{*}$ which miss at least $2 n \epsilon / k$ of the intervals of length $k / 2$
- and show that $\lim _{n \rightarrow \infty} \frac{\operatorname{card}(\mathfrak{B})}{2^{n}}=0$.
- Given $\epsilon>0$, we may assume k is large enough that for every interval $I \subset \mathbb{N}$ with $|I| \geqslant k / 2$,

$$
0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)}-h_{\mathrm{top}}(X, \sigma)<\epsilon
$$

- We let \mathfrak{B} denote the set of $S \subset n^{*}$ which miss at least $2 n \epsilon / k$ of the intervals of length $k / 2$
- and show that $\lim _{n \rightarrow \infty} \frac{\operatorname{card}(\mathfrak{B})}{2^{n}}=0$.
- If $S \notin \mathfrak{B}$, then S hits many of the intervals of length $k / 2$,
- Given $\epsilon>0$, we may assume k is large enough that for every interval $I \subset \mathbb{N}$ with $|I| \geqslant k / 2$,

$$
0 \leqslant \frac{\log N(I)}{\operatorname{card}(I)}-h_{\mathrm{top}}(X, \sigma)<\epsilon
$$

- We let \mathfrak{B} denote the set of $S \subset n^{*}$ which miss at least $2 n \epsilon / k$ of the intervals of length $k / 2$
- and show that $\lim _{n \rightarrow \infty} \frac{\operatorname{card}(\mathfrak{B})}{2^{n}}=0$.
- If $S \notin \mathfrak{B}$, then S hits many of the intervals of length $k / 2$,
- and hence $S+k^{*}$ is the union of intervals of length at least k, and we can arrange that the gaps are also long enough to satisfy the above estimate comparing to $h_{\text {top }}(X, \sigma)$.

Measure-theoretic dynamical systems

Measure-theoretic dynamical system (X, \mathcal{B}, μ, T)

- X is a measure space
- \mathcal{B} is a σ-algebra of measurable subsets of X
- μ is a probability measure on X, i.e., $\mu(X)=1$
- $T: X \rightarrow X$ is a measure-preserving transformation on X, i.e., T is a one-to-one onto map such that $\mu\left(T^{-1} E\right)=\mu(E)$ for all $E \in \mathcal{B}$

Measure-theoretic dynamical systems

Measure-theoretic dynamical system (X, \mathcal{B}, μ, T)

- X is a measure space
- \mathcal{B} is a σ-algebra of measurable subsets of X
- μ is a probability measure on X, i.e., $\mu(X)=1$
- $T: X \rightarrow X$ is a measure-preserving transformation on X, i.e., T is a one-to-one onto map such that $\mu\left(T^{-1} E\right)=\mu(E)$ for all $E \in \mathcal{B}$

Entropy of a partition

The entropy of a finite measurable partition $\alpha=\left\{A_{1}, \ldots, A_{n}\right\}$ of X is defined by

$$
H_{\mu}(\alpha)=-\sum_{i=1}^{n} \mu\left(A_{i}\right) \log \mu\left(A_{i}\right)
$$

Definition

The entropy of X and T with respect to μ and a partition α is

$$
h_{\mu}(X, \alpha, T)=\lim _{n \rightarrow \infty} \frac{1}{n} H_{\mu}\left(\alpha \vee T^{-1} \alpha \vee \cdots \vee T^{-n+1} \alpha\right)
$$

The entropy of the transformation T is defined to be

$$
h_{\mu}(X, T)=\sup _{\alpha} h_{\mu}(X, \alpha, T) .
$$

For a partition α of X and a subset $S \subset n^{*}$ define

$$
\alpha_{S}=\bigvee_{i \in S} T^{-i} \alpha
$$

For a partition α of X and a subset $S \subset n^{*}$ define

$$
\alpha_{S}=\bigvee_{i \in S} T^{-i} \alpha
$$

Definition ($\mathrm{P}-\mathrm{W}$)

Let (X, \mathcal{B}, μ, T) be a measure-preserving system, $\alpha=\left\{A_{1}, \ldots, A_{n}\right\}$ a finite measurable partition of X, and c_{S}^{n} a system of coefficients. The measure-theoretic intricacy of T with respect to the partition α is

$$
\operatorname{lnt}_{\mu}(X, \alpha, T)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n}\left[H_{\mu}\left(\alpha_{S}\right)+H_{\mu}\left(\alpha_{S^{c}}\right)-H_{\mu}\left(\alpha_{n^{*}}\right)\right]
$$

For a partition α of X and a subset $S \subset n^{*}$ define

$$
\alpha_{S}=\bigvee_{i \in S} T^{-i} \alpha
$$

Definition (P-W)

Let (X, \mathcal{B}, μ, T) be a measure-preserving system, $\alpha=\left\{A_{1}, \ldots, A_{n}\right\}$ a finite measurable partition of X, and c_{S}^{n} a system of coefficients. The measure-theoretic intricacy of T with respect to the partition α is

$$
\operatorname{lnt}_{\mu}(X, \alpha, T)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n}\left[H_{\mu}\left(\alpha_{S}\right)+H_{\mu}\left(\alpha_{S^{c}}\right)-H_{\mu}\left(\alpha_{n^{*}}\right)\right]
$$

The measure-theoretic average sample complexity of T with respect to the partition α is

$$
\operatorname{Asc}_{\mu}(X, \alpha, T)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n} H_{\mu}\left(\alpha_{S}\right)
$$

Theorem
The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem
The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem
Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_{S}^{n}=2^{-n}$. Then

$$
\sup _{\alpha} \operatorname{Asc}_{\mu}(X, \alpha, T)=h_{\mu}(X, T) .
$$

Theorem
The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem
Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_{S}^{n}=2^{-n}$. Then

$$
\sup _{\alpha} \operatorname{Asc}_{\mu}(X, \alpha, T)=h_{\mu}(X, T) .
$$

The proofs are similar to those for the corresponding theorems in the topological setting.

Theorem
The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem
Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_{S}^{n}=2^{-n}$. Then

$$
\sup _{\alpha} \operatorname{Asc}_{\mu}(X, \alpha, T)=h_{\mu}(X, T) .
$$

The proofs are similar to those for the corresponding theorems in the topological setting. These observations indicate that there may be a topological analogue of the following result.

Theorem
The limits in the definitions of measure-theoretic intricacy and measure-theoretic average sample complexity exist.

Theorem
Let (X, \mathcal{B}, μ, T) be a measure-preserving system and fix the system of coefficients $c_{S}^{n}=2^{-n}$. Then

$$
\sup _{\alpha} \operatorname{Asc}_{\mu}(X, \alpha, T)=h_{\mu}(X, T) .
$$

The proofs are similar to those for the corresponding theorems in the topological setting. These observations indicate that there may be a topological analogue of the following result.

Theorem (Ornstein-Weiss, 2007)

If J is a finitely observable functional defined for ergodic finite-valued processes that is an isomorphism invariant, then J is a continuous function of the measure-theoretic entropy.

- The arguments adapt to open covers $\left(\mathcal{U}_{k}\right)$ and partitions α_{k}.
- The arguments adapt to open covers $\left(\mathcal{U}_{k}\right)$ and partitions α_{k}. Thanks to JPT for helpful comments that led to these proofs.
- The arguments adapt to open covers $\left(\mathcal{U}_{k}\right)$ and partitions α_{k}. Thanks to JPT for helpful comments that led to these proofs.
- So it is better to examine these measures locally:
- The arguments adapt to open covers $\left(\mathcal{U}_{k}\right)$ and partitions α_{k}. Thanks to JPT for helpful comments that led to these proofs.
- So it is better to examine these measures locally:
- Fix a k and find the topological average sample complexity $\operatorname{Asc}\left(X, \mathcal{U}_{k}, \sigma\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} C_{S}^{n} \log N\left(\left(\mathcal{U}_{k}\right)_{S}\right)$,
- The arguments adapt to open covers $\left(\mathcal{U}_{k}\right)$ and partitions α_{k}. Thanks to JPT for helpful comments that led to these proofs.
- So it is better to examine these measures locally:
- Fix a k and find the topological average sample complexity $\operatorname{Asc}\left(X, \mathcal{U}_{k}, \sigma\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n} \log N\left(\left(\mathcal{U}_{k}\right) s\right)$,
- or do not take the limit on n, and study it as a function of n,
- The arguments adapt to open covers $\left(\mathcal{U}_{k}\right)$ and partitions α_{k}. Thanks to JPT for helpful comments that led to these proofs.
- So it is better to examine these measures locally:
- Fix a k and find the topological average sample complexity $\operatorname{Asc}\left(X, \mathcal{U}_{k}, \sigma\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} C_{S}^{n} \log N\left(\left(U_{k}\right)_{S}\right)$,
- or do not take the limit on n, and study it as a function of n,
- analogously to the symbolic or topological complexity functions.
- The arguments adapt to open covers $\left(\mathcal{U}_{k}\right)$ and partitions α_{k}. Thanks to JPT for helpful comments that led to these proofs.
- So it is better to examine these measures locally:
- Fix a k and find the topological average sample complexity $\operatorname{Asc}\left(X, \mathcal{U}_{k}, \sigma\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n} \log N\left(\left(U_{k}\right)_{S}\right)$,
- or do not take the limit on n, and study it as a function of n,
- analogously to the symbolic or topological complexity functions.
- Similarly for the measure-theoretic version: fix a partition α and study the limit, or the function of n.

$$
\operatorname{Asc}_{\mu}(X, T, \alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n} H_{\mu}\left(\alpha_{S}\right)
$$

So we begin study of Asc for a fixed open cover as a function of n.

$$
\operatorname{Asc}\left(X, \sigma, U_{k}, n\right)=\frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n} \log N(S)
$$

So we begin study of Asc for a fixed open cover as a function of n.

$$
\operatorname{Asc}\left(X, \sigma, \mathcal{U}_{k}, n\right)=\frac{1}{n} \sum_{S \subset n^{*}} c_{S}^{n} \log N(S)
$$

Example

Figure: Graphs of two subshifts with the same complexity function but different average sample complexity functions.

$$
\operatorname{Asc}(n)=\frac{1}{n} \frac{1}{2^{n}} \sum_{S \subset n^{*}} \log N(S)
$$

${ }^{\wedge} \mathrm{p}^{\prime}(\mathrm{a})$

Interesting example

These SFTs have the same entropy and complexity functions (words of length n) but different Asc and Int functions.

Results in measure-theoretic setting

For a fixed partition α, we give a relationship between $\mathrm{Asc}_{\mu}(X, \alpha, T)$ and a series summed over i involving the conditional entropies $H_{\mu}\left(\alpha \mid \alpha_{i}^{\infty}\right)$.

Results in measure-theoretic setting

For a fixed partition α, we give a relationship between $\mathrm{Asc}_{\mu}(X, \alpha, T)$ and a series summed over i involving the conditional entropies $H_{\mu}\left(\alpha \mid \alpha_{i}^{\infty}\right)$.
Idea

- View a subset $S \subset n^{*}$ as corresponding to a random binary string of length n generated by Bernoulli measure $\mathcal{B}(1 / 2,1 / 2)$ on the full 2-shift.
- For example $\{0,2,3\} \subset 5^{*} \leftrightarrow 10110$.

Results in measure-theoretic setting

For a fixed partition α, we give a relationship between Asc $_{\mu}(X, \alpha, T)$ and a series summed over i involving the conditional entropies $H_{\mu}\left(\alpha \mid \alpha_{i}^{\infty}\right)$.
Idea

- View a subset $S \subset n^{*}$ as corresponding to a random binary string of length n generated by Bernoulli measure $\mathcal{B}(1 / 2,1 / 2)$ on the full 2-shift.
- For example $\{0,2,3\} \subset 5^{*} \leftrightarrow 10110$.
- The average entropy, $H_{\mu}\left(\alpha_{S}\right)$, over all $S \subset n^{*}$, is then an integral and can be interpreted in terms of the entropy of a first-return map to the cylinder $A=[1]$ in a cross product of our system X and the full 2 -shift, Σ_{2}.

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and α a finite measurable partition of X. Let $A=[1]=\left\{\xi \in \Sigma_{2}^{+}: \xi_{0}=1\right\}$ and $\beta=\alpha \times A$ the related finite partition of $X \times A$. Denote by $T_{X \times A}$ the first-return map on $X \times A$ and let $P_{A}=P / P[1]$ denote the measure P restricted to A and normalized. Let $c_{S}^{n}=2^{-n}$ for all $S \subset n^{*}$. Then

$$
\operatorname{Asc}_{\mu}(X, \alpha, T)=\frac{1}{2} h_{\mu \times P_{A}}\left(X \times A, \beta, T_{X \times A}\right) .
$$

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and α a finite measurable partition of X. Let $A=[1]=\left\{\xi \in \Sigma_{2}^{+}: \xi_{0}=1\right\}$ and $\beta=\alpha \times A$ the related finite partition of $X \times A$. Denote by $T_{X \times A}$ the first-return map on $X \times A$ and let $P_{A}=P / P[1]$ denote the measure P restricted to A and normalized. Let $c_{S}^{n}=2^{-n}$ for all $S \subset n^{*}$. Then

$$
\operatorname{Asc}_{\mu}(X, \alpha, T)=\frac{1}{2} h_{\mu \times P_{A}}\left(X \times A, \beta, T_{X \times A}\right) .
$$

Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving system and α a finite measurable partition of X. Let $c_{S}^{n}=2^{-n}$ for all $S \subset n^{*}$. Then

$$
\operatorname{Asc}_{\mu}(X, \alpha, T) \geqslant \frac{1}{2} \sum_{i=1}^{\infty} \frac{1}{2^{i}} H_{\mu}\left(\alpha \mid \alpha_{i}^{\infty}\right)
$$

Equality holds in certain cases (in particular, for Markov shifts)

In the topological case the first-return map $T_{X \times A}$ is not continuous nor expansive nor even defined on all of $X \times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply.

In the topological case the first-return map $T_{X \times A}$ is not continuous nor expansive nor even defined on all of $X \times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply. To maximize Int, there is the added problem of the minus sign in

$$
\operatorname{Int}(X, \mathcal{U}, T)=2 \operatorname{Asc}(X, \mathcal{U}, T)-h_{\text {top }}(X, \mathcal{U}, T)
$$

In the topological case the first-return map $T_{X \times A}$ is not continuous nor expansive nor even defined on all of $X \times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply. To maximize Int, there is the added problem of the minus sign in

$$
\operatorname{Int}(X, \mathcal{U}, T)=2 \operatorname{Asc}(X, \mathcal{U}, T)-h_{\text {top }}(X, \mathcal{U}, T)
$$

Maybe some modern work on local or relative variational principles, almost subadditive potentials, equilibrium states for shifts with infinite alphabets, etc. could apply? (Barreira, Mummert, Yayama, Cao-Feng-Huang, Huang-Ye-Zhang, Huang-Maass-Romagnoli-Ye, Cheng-Zhao-Cao, ...)

In the topological case the first-return map $T_{X \times A}$ is not continuous nor expansive nor even defined on all of $X \times A$ in general, so known results about measures of maximal entropy and equilibrium states do not apply. To maximize Int, there is the added problem of the minus sign in

$$
\operatorname{Int}(X, \mathcal{U}, T)=2 \operatorname{Asc}(X, \mathcal{U}, T)-h_{\mathrm{top}}(X, \mathcal{U}, T)
$$

Maybe some modern work on local or relative variational principles, almost subadditive potentials, equilibrium states for shifts with infinite alphabets, etc. could apply? (Barreira, Mummert, Yayama, Cao-Feng-Huang, Huang-Ye-Zhang, Huang-Maass-Romagnoli-Ye, Cheng-Zhao-Cao, ...)
But the above theorem does give up some information immediately:

Proposition

When $T: X \rightarrow X$ is an expansive homeomorphism on a compact metric space (e.g., a subshift), $\operatorname{Asc}_{\mu}(X, T, \alpha)$ is an affine upper semicontinuous (in the weak* topology) function of μ, so the set of maximal measures for $\operatorname{Asc}_{\mu}(X, T, \alpha)$ is nonempty, compact, and convex and contains ergodic measures (see Walters, p. 198 ff.).

Markov Shift

- Consider the measure on the shift space $\left(\Sigma_{n}, \sigma\right)$ given by s stochastic matrix $P=\left(P_{i j}\right)$ and fixed probability vector $p=\left(\begin{array}{llll}p_{0} & p_{1} & \ldots & p_{n-1}\end{array}\right)$, i.e. $\sum p_{i}=1$ and $p P=p$.
- The measure $\mu_{P, p}$ is defined as usual on cylinder sets by $\mu_{p, P}\left[i_{0} i_{1} \ldots i_{k}\right]=p_{i_{0}} P_{i_{0} i_{1}} \cdots P_{i_{k-1} i_{k}}$.

Markov Shift

- Consider the measure on the shift space $\left(\Sigma_{n}, \sigma\right)$ given by s stochastic matrix $P=\left(P_{i j}\right)$ and fixed probability vector $p=\left(\begin{array}{llll}p_{0} & p_{1} & \ldots & p_{n-1}\end{array}\right)$, i.e. $\sum p_{i}=1$ and $p P=p$.
- The measure $\mu_{P, p}$ is defined as usual on cylinder sets by $\mu_{p, P}\left[i_{0} i_{1} \ldots i_{k}\right]=p_{i_{0}} P_{i_{0} i_{1}} \cdots P_{i_{k-1} i_{k}}$.

Example (1-step Markov measure on the golden mean shift) Denote by $P_{00} \in[0,1]$ the probability of going from 0 to 0 in a sequence of $X_{\{11\}} \subset \Sigma_{2}$. Then

$$
P=\left(\begin{array}{cc}
P_{00} & 1-P_{00} \\
1 & 0
\end{array}\right), \quad p=\left(\begin{array}{cc}
\frac{1}{2-P_{00}} & \frac{1-P_{00}}{2-P_{00}}
\end{array}\right)
$$

Markov Shift

- Consider the measure on the shift space $\left(\Sigma_{n}, \sigma\right)$ given by s stochastic matrix $P=\left(P_{i j}\right)$ and fixed probability vector $p=\left(\begin{array}{llll}p_{0} & p_{1} & \ldots & p_{n-1}\end{array}\right)$, i.e. $\sum p_{i}=1$ and $p P=p$.
- The measure $\mu_{P, p}$ is defined as usual on cylinder sets by $\mu_{p, P}\left[i_{0} i_{1} \ldots i_{k}\right]=p_{i_{0}} P_{i_{0} i_{1}} \cdots P_{i_{k-1} i_{k}}$.

Example (1-step Markov measure on the golden mean shift)

Denote by $P_{00} \in[0,1]$ the probability of going from 0 to 0 in a sequence of $X_{\{11\}} \subset \Sigma_{2}$. Then

$$
P=\left(\begin{array}{cc}
P_{00} & 1-P_{00} \\
1 & 0
\end{array}\right), \quad p=\left(\begin{array}{cc}
\frac{1}{2-P_{00}} & \frac{1-P_{00}}{2-P_{00}}
\end{array}\right)
$$

Using the series formula and known equations for conditional entropy, we approximate Asc_{μ} and Int_{μ} for Markov measures on SFTs.

1-step Markov measures on the golden mean shift
Calculations for one-step Markov measure

P_{00}	h_{μ}	Asc_{μ}	Int_{μ}
0.618	$\mathbf{0 . 4 8 1}$	0.266	0.051
0.533	0.471	$\mathbf{0 . 2 7 1}$	0.071
0.216	0.292	0.208	$\mathbf{0 . 1 2 4}$

- Maximum value of $h_{\mu}=h_{\text {top }}=\log \phi$ when $P_{00}=1 / \phi$
- Unique maxima among 1-step Markov measures for Asc_{μ} and Int $_{\mu}$
- Maxima for $\mathrm{Asc}_{\mu}, \operatorname{Int}_{\mu}$, and h_{μ} achieved by different measures

2-step Markov measures on the golden mean shift
Intricacy for two-step Markov measure

Average sample complexity for two-step Markov measure

on the golden mean shift

P_{000}	P_{100}	h_{μ}	Asc_{μ}	lnt_{μ}
0.618	0.618	$\mathbf{0 . 4 8 1}$	0.266	0.051
0.483	0.569	0.466	$\mathbf{0 . 2 7 2}$	0.078
0	0.275	0.344	0.221	$\mathbf{0 . 1 6 7}$

- Asc_{μ} appears to be strictly convex, so it would have a unique maximum among 2-step Markov measures
- Int_{μ} appears to have a unique maximum among 2-step Markov measures on a proper subshift ($P_{000}=0$)
- The maxima for Asc_{μ}, $\operatorname{Int}{ }_{\mu}$, and h_{μ} are achieved by different measures

1-step Markov measures on the full 2-shift

Average sample complexity for one-step Markov measure

P_{00}	P_{11}	h_{μ}	Asc_{μ}	lnt_{μ}
0.5	0.5	$\mathbf{0 . 6 9 3}$	$\mathbf{0 . 3 4 7}$	0
0.216	0	0.292	0.208	$\mathbf{0 . 1 2 4}$
0	0.216	0.292	0.208	$\mathbf{0 . 1 2 4}$
0.905	0.905	0.315	0.209	0.104

Intricacy for one-step Markov measure

1-step Markov measures on the full 2-shift
Average sample complexity for one-step Markov measure

- Asc_{μ} appears to be strictly convex, so it would have a unique maximum among 1-step Markov measures
- Int_{μ} appears to have two maxima among 1-step Markov measures on proper subshifts ($P_{00}=0$ and $P_{11}=0$).
- There seems to be a 1 -step Markov measure that is fully supported and is a local maximum for Int_{μ} among all 1-step Markov measures.
- The maxima for $\mathrm{Asc}_{\mu}, \operatorname{Int}_{\mu}$, and h_{μ} are achieved by different measures.

We summarize some of the questions generated above.

We summarize some of the questions generated above.
Conj. 1: On the golden mean SFT, for each r there is a unique r-step Markov measure μ_{r} that maximizes $\operatorname{Asc}_{\mu}(X, \sigma, \alpha)$ among all r-step Markov measures.

We summarize some of the questions generated above.
Conj. 1: On the golden mean SFT, for each r there is a unique r-step Markov measure μ_{r} that maximizes $\operatorname{Asc}_{\mu}(X, \sigma, \alpha)$ among all r-step Markov measures.

Conj. 2: $\mu_{2} \neq \mu_{1}$

Conj. 2: $\mu_{2} \neq \mu_{1}$

P_{00}	h_{μ}	Asc_{μ}	lnt_{μ}
0.618	$\mathbf{0 . 4 8 1}$	0.266	0.051
0.533	0.471	$\mathbf{0 . 2 7 1}$	0.071
0.216	0.292	0.208	$\mathbf{0 . 1 2 4}$

Table: Calculations for one-step Markov measures on the golden mean shift. Bolded numbers are maxima for given category.

Conj. 2: $\mu_{2} \neq \mu_{1}$

P_{00}	h_{μ}	Asc_{μ}	lnt_{μ}
0.618	$\mathbf{0 . 4 8 1}$	0.266	0.051
0.533	0.471	$\mathbf{0 . 2 7 1}$	0.071
0.216	0.292	0.208	$\mathbf{0 . 1 2 4}$

Table: Calculations for one-step Markov measures on the golden mean shift. Bolded numbers are maxima for given category.

P_{000}	P_{100}	h_{μ}	Asc_{μ}	Int_{μ}
0.618	0.618	$\mathbf{0 . 4 8 1}$	0.266	0.051
0.483	0.569	0.466	$\mathbf{0 . 2 7 2}$	0.078
0	0.275	0.344	0.221	$\mathbf{0 . 1 6 7}$

Table: Calculations for two-step Markov measures on the golden mean shift.

Conj. 3: On the golden mean SFT there is a unique measure that maximizes $\operatorname{Asc}_{\mu}(X, T, \alpha)$. It is not Markov of any order (and of course is not the same as $\mu_{\max }$).

Conj. 3: On the golden mean SFT there is a unique measure that maximizes $\operatorname{Asc}_{\mu}(X, T, \alpha)$. It is not Markov of any order (and of course is not the same as $\mu_{\text {max }}$).

Conj. 4: On the golden mean SFT for each r there is a unique r-step Markov measure that maximizes $\operatorname{Int}_{\mu}(X, T, \alpha)$ among all r-step Markov measures.

Conj. 3: On the golden mean SFT there is a unique measure that maximizes $\operatorname{Asc}_{\mu}(X, T, \alpha)$. It is not Markov of any order (and of course is not the same as $\mu_{\text {max }}$).

Conj. 4: On the golden mean SFT for each r there is a unique r-step Markov measure that maximizes $\operatorname{Int}_{\mu}(X, T, \alpha)$ among all r-step Markov measures.

Intricacy for two-step Markov measure on the golden mean shift

Two-step Markov measure on the golden mean shift

Figure: Combination of the plots of $h_{\mu}, \mathrm{Asc}_{\mu}$, and $\operatorname{Int}{ }_{\mu}$ for two-step Markov measures on the golden mean shift.

Conj. 5: On the 2-shift there are two 1-step Markov measures that maximize $\operatorname{Int}_{\mu}(X, T, \alpha)$ among all 1-step Markov measures. They are supported on the golden mean SFT and its image under the dualizing map $0 \leftrightarrow 1$.

Conj. 5: On the 2-shift there are two 1-step Markov measures that maximize $\operatorname{Int}_{\mu}(X, T, \alpha)$ among all 1-step Markov measures. They are supported on the golden mean SFT and its image under the dualizing map $0 \leftrightarrow 1$.

Intricacy for one-step Markov measure on the full 2-shift

Conj. 6: On the 2 -shift there is a 1 -step Markov measure that is fully supported and is a local maximum point for $\operatorname{Int}_{\mu}(X, T, \alpha)$ among all 1-step Markov measures.

Conj. 6: On the 2-shift there is a 1 -step Markov measure that is fully supported and is a local maximum point for $\operatorname{Int}_{\mu}(X, T, \alpha)$ among all 1-step Markov measures.

Intricacy for one-step Markov measure on the full 2 -shift

- The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- We do not know whether a variational principle $\sup _{\mu} \operatorname{Asc}_{\mu}(X, T, \alpha)=\operatorname{Asc}_{\text {top }}(X, T)$ holds.
- The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- We do not know whether a variational principle $\sup _{\mu} \operatorname{Asc}_{\mu}(X, T, \alpha)=\operatorname{Asc}_{\text {top }}(X, T)$ holds.
- Analogous definitions, results, and conjectures exist when entropy is generalized to pressure, by including a potential function which measures the energy or cost associated with each configuration.
- The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- We do not know whether a variational principle $\sup _{\mu} \operatorname{Asc}_{\mu}(X, T, \alpha)=\operatorname{Asc}_{\text {top }}(X, T)$ holds.
- Analogous definitions, results, and conjectures exist when entropy is generalized to pressure, by including a potential function which measures the energy or cost associated with each configuration.
- First one can consider a function of just a single coordinate that gives the value of each symbol.
- The conjectures extend to arbitrary shifts of finite type and other dynamical systems.
- We do not know whether a variational principle $\sup _{\mu} \operatorname{Asc}_{\mu}(X, T, \alpha)=\operatorname{Asc}_{\text {top }}(X, T)$ holds.
- Analogous definitions, results, and conjectures exist when entropy is generalized to pressure, by including a potential function which measures the energy or cost associated with each configuration.
- First one can consider a function of just a single coordinate that gives the value of each symbol.
- Maximum intricacy may be useful for finding areas of high information activity, such as working regions in a brain (Edelman-Sporns-Tononi) or coding regions in genetic material (Koslicki-Thompson).

The end

The end (of this talk).

