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Ordinary tail fields

Stationary processes

(X ,B, µ,T ) ergodic measure-preserving system (usually
invertible)

α = {a1, . . . ,ar} finite measurable partition

The process (X ,B, µ,T , α) corresponds to a shift-invariant
measure (also call it µ) on Ω = αZ.

The time-0 partition of Ω is a generator for the m.p. system
(Ω, µ, σ).
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Ordinary tail fields

Tail fields

The future tail field is T + =
⋂

n≥0 B(ωn, ωn+1, . . . ).

In X , T +(α) =
⋂

n≥0 B(T−nα ∨ T−n−1α ∨ . . . ).

It is the intersection of the algebras generated by all the
cylinder sets {T nx ∈ ain , . . . ,T

n+jx ∈ ain+j : n, j ≥ 0}.

When α is a generator, T +(α) is the Pinsker algebra of
(X ,B, µ,T ).
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Ordinary tail fields

The K property

A system (X ,B, µ,T ) is K (has the Kolmogorov property) if
there is a generator α such that T +(α) is trivial, i.e. consists
only of sets of measure 0 or 1.

We also define T −(α) =
⋂

n≥0 B(T nα ∨ T n+1α ∨ . . . ) ,
T ±(α) =

⋂
n≥0 B{xi : |i | ≥ n}.

Rohlin-Sinai, 1961: (X ,B, µ,T ) is K if and only if it has
completely positive entropy, i.e. every nontrivial factor has
positive entropy.

Therefore, for any partition α, T −(α) is trivial if and only if
T +(α) is trivial (because for any β ≤ α,hµ(T , β) = hµ(T−1, β)).
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Ordinary tail fields

Changing generators
Ornstein-Weiss, 1975: Given a partition α, there is a
refinement β ≥ α such that T ±(β) = B.

Thus even if the process (α,T ) is K , so that no information
about the present remains in either the remote future or in the
remote past,

it can be recoded to an isomorphic process that is 2-sided
deterministic: if the remote past and remote future can
communicate and cooperate, they can determine what is going
on near the present.

———-]———–[——-0——-]———–[———-
known ??????? known
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Fine tail fields

Fine tail fields
The ordinary tail fields are the fields of saturated sets for the
Borel equivalence relation under finite coordinate changes.

Now consider some finer tail fields that allow for saving a limited
amount of information as the present recedes into the distance.

G= a group, probably Zr . Assume discrete, countable, maybe
abelian.

ψ : Ω→ G, a Borel map (or continuous, or even a one-block
map), also considered as a map on X

ψn
m(x) = ψ(T mx) · · ·ψ(T nx), in abelian case

n∑
k=m

ψ(T kx)
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Fine tail fields

Fine tail fields 2

E.g., if ψ : Ω→ Zd is defined by ψ(ω) = ei ∈ Zd if ω0 = ai , then
ψn−1

0 (ω) gives in each entry i the number of times that ai
appears in the first n entries in ω.

F+
ψ (α)=

⋂
n≥0 B(ψn

0 , ψ
n+1
0 , . . . )

F−ψ (α)=
⋂

n≥0 B(ψ0
−n, ψ

0
−n−1, . . . )

F±ψ (α)=
⋂

n≥0 B{ψ
j
−j : j ≥ 0}
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Fine tail fields

Equivalence relations

These sigma-algebras are the saturated sets of corresponding
Borel equivalence relations

ω ∼ ω′ if and only if ω, ω′ differ in only finitely many coordinates
and

∑∞
0 or −∞[ψ(σkω)− ψ(σkω′)] = 0.

When ψ is the symbol-counting cocycle, these equivalence
relations are the orbit relation of the group of finite coordinate
permutations.
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Fine tail fields

Relations among fields

Note that F+
ψ (α)⊃ T +and F−ψ (α)⊃ T −.

Also, T ±⊃ T +, T −

but sometimes T ± 6= T +∩ T −

and sometimes F±ψ (α)+ F+
ψ (α), F−ψ (α).
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Super-K

We say that a process (α,T ) is super-K+ if F+
ψ (α) is trivial,

with ψ the symbol-counting cocycle.

Super-K− and super-K± are defined similarly.

For example, Bernoulli processes are super-K+, super-K−,
and super-K± (Hewitt-Savage, 1988).

There are also such results for the 2-sided case by
Blackwell-Freedman for Markov processes, Georgii for Gibbs
states, Berbee-den Hollander for integer-valued processes, and
others.
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Super-K

Dependence on the partition

But we don’t know, for example, whether F+
ψ (α) trivial implies

F−ψ (α) trivial.

And unlike the K property, super-K depends on the choice of
generating partition.

We can have F+
ψ (α) trivial and find a refinement β ≥ α with

F+
ψ (β) nontrivial (in fact equal to B).
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Super-K

Triviality of two-sided fine tails
K. Schmidt-KP, 1997: Let µ be a shift-invariant Gibbs measure
with summable-variation potential on a mixing SFT ΣM ;

ψ : ΣM → G a continuous function into a countable discrete
group with finite conjugacy classes.

Then F±ψ (α) is trivial—i.e., µ is ergodic with respect to the
equivalence relation defined by ψ: (Ω, µ, σ) is super-K±.

K. Schmidt, 1999: If (X ,B, µ,T )is ergodic and ψ : X → G (as
above) is Borel, then F±ψ (α)=T ±. Interpretation: History is
useless and science is impossible.

Corollary: Any process (could be countable-state) with 2-sided
trivial tail field T ± is super-K±: F±ψ (α) is trivial.
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Super-K plus generators

Super-K + generators

JPT-KP, 2004: If an ergodic system (X ,B, µ,T ), with generator
α, is isomorphic to the direct product of a positive-entropy
Bernoulli system (B, σ) and some other system (Y ,S), then
there is a generator β for (X ,B, µ,T ) such that
F+(β) = T +(β) =T +.

Consequently, every K process with a direct Bernoulli factor
has a super-K+ generator (since then T +, the Pinsker algebra,
is trivial).

The idea of the proof is to construct a partition β with
F+(β) ⊂ T +(β), so that no new information is provided by
counting β-symbols.
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Super-K plus generators

Ingredients of the proof
A key tool is

JPT, 1975: Every system is relatively K over its Pinsker factor:
Given k ∈ N and ε > 0, for large enough n

βk
−k ⊥εP(T ) β

∞
n , i.e.,

|H(βK
−k |P(T )) + H(β∞n |P(T ))− H(βk

−k ∨ β∞n |P(T ))| < ε

This implies that if for all k , ε there is N such that if n ≥ N then
βk
−k ⊥εβ∞

n
ψn

0(β),

then β∞−∞ ⊥P(T ) F+(β),

and hence F+(β) ⊂ P(T ) = T +(β).
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Super-K plus generators

Recoding
Suppose X ,Y ,B have generators α, γ, ρ, respectively.

We take an alphabet β0 large enough that all γ-names can be
matched by β0-names of a particular kind, in particular
permutations of a single β0-name in which every symbol
appears the same number of times.

We use a special marker block W = 1tq2tq · · · |ρ|tq.
Appearances of W in sequences ω ∈ B cut Z into marked and
free intervals.

On each marked interval, where W appears in B, we do not
change the B coding, but we change the Y coding so that each
β0 symbol appears the same number of times.
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Super-K plus generators

Coding free intervals
On each free interval, we recode the γ × ρ name by cutting into
subintervals and using permutations of a string of all β0 × ρ
symbols (one of each symbol), plus we add one extra symbol,
which depends only on the length of the free interval.

We also add filler symbols to make the lengths come out;
β = β0 plus a filler symbol.

Now the β-symbol count across a union of free and marked
intervals is constant on the marked intervals and a function of
B, hence asymptotically adds no information to the ordinary tail.

If the count ends inside a marked or free interval, with high
probability we have a bounded translate of a count across a
complete union of intervals, so it is not too different.
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Super-K plus generators

Super-K generators for K systems

JPT, 2008: If (X ,B, µ,T ) is ergodic, finite entropy, and weak
Pinsker (for every ε > 0, X ≈ B × Y with B Bernoulli and
h(Y ) < ε), then there is a finite generator α with F±ψ (α)= P(T ).

Corollary: If (X ,B, µ,T ) is K , it has a super-K± generator.
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Systems that present tail fields

Odometers
For the full shift on AN, the group Γ of finite coordinate changes
has the invariant sets equal to T +.

The orbits are the same as those of the d-odometer.

Similarly for a SFT ΣM : T + is the field of invariant sets for the
stationary adic.
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Systems that present tail fields

Invariant measures

The unique invariant measure for the adic on a SFT assigns
equal measure to all cylinder sets determined by paths from the
root to a selected vertex.

The measure of maximal entropy on ΣM assigns pretty much
the same measure of all cylinder sets of a fixed length.
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Systems that present tail fields

Graphs for the fine tail fields

For the fine tail fields F+
ψ (α), we form a graph whose vertices

are the possible values of ψn
0(x).

Suppose the values taken by ψ (assume it’s a 1-block map) are
the members of the alphabet A = {a1, . . . ,ar} ⊂ Zd (could be a
multiset).

The vertices are 0 and all sn(x) =
∑n

k=1 ψ(xk ),

with x = (xk ) ∈ AN giving the edge labels of a path in Zd :

xk labels the edge from sk−1(x) to sk (x).
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Systems that present tail fields

Adic transformations

The fine tail equivalence relation on AN has x ∼ y if there is N
such that sn(x) = sn(y) for all n ≥ N: the paths are
cofinal—eventually coincide.

The equivalence classes are the orbits of any adic
(Bratteli-Vershik) transformation that is defined on most of AN

once the incoming edges to each vertex are given a total order.

The invariant sets of each such adic transformation are F+
ψ (α).

Thus these systems visually present the future fine tail
fields—we can see the corresponding equivalence relations.
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Systems that present tail fields

The Pascal walk
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Systems that present tail fields

The Delannoy graph
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Systems that present tail fields

Xavier Méla’s X3 walk
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Systems that present tail fields

Frick’s 2x + 1 walk
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Frick’s 2x + 1 system



Systems that present tail fields

A walk with 4 vectors



Systems that present tail fields

An isotropic adic system based on a walk with 4
vectors



Systems that present tail fields

Ordering incoming edges to define the transformation

1
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Some questions about the systems

Ergodic measures
Identifying the invariant measures

depends on knowing the
path counts dim(v ,w) = number of paths from v to w .

For Pascal,
(

n − n0

k − k0

)
.

For Delannoy, D(i , j) =

j∑
d=0

2d
(

i
d

)(
j
d

)
.

For these isotropic systems, the ergodic measures are an
(r − 1)-parameter family of Bernoulli measures given by
specifying weights pi on each of the possible walk steps ai
(cf. Hewitt-Savage, de Finetti.)
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Some questions about the systems

Expansiveness and complexity
Coding the adic transformation by the first edge (or initial
segment of a fixed length): expansiveness.

It is faithful for the Pascal (Méla), Pascal-based (Frick),
Delannoy, and some others.

We are trying to produce a general argument as well as
describe the fibers in cases where the coding is not faithful.

We want to calculate the complexity p(n) = number of n-blocks
in the coding, asymptotically.

For the Pascal, p(n) ∼ n3/6 (Méla).

For the Delannoy, p(n) ∼ n3/24 (Frick).
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Some questions about the systems

Varying orders

These properties depend on the choice of order of the incoming
edges.

What is the maximum complexity over all possible orders?

What is the expected complexity if the orders at the vertices are
chosen independently according to a fixed Bernoulli measure?

It seems that for the Pascal, for every order p(n) is
asymptotically no more than n5/3.
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Some questions about the systems

More questions
There are many open dynamical properties for these adic
systems, each with one of its invariant measures

and for the coded subshifts.

Joinings, rank, spectrum, loosely Bernoulli, etc.

When the simple walks that give rise to isotropic adic systems
are allowed to evolve according to reinforcement schemes,
even more interesting systems arise,

for example the Eulerian system studied by
Frick-Keane-KP-Salama, Frick-KP, KP-Varchenko,
Gnedin-Olshanski.
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The Eulerian adic with path counts
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Some questions about the systems

C∗ algebra connections

Study of such systems leads to interesting combinatorial
questions and connections with C∗ algebras and group
representations (Kerov).

Indeed, the Pascal graph is an example of an AF C∗ algebra
(the “CCR" algebra) in Bratteli’s 1972 paper.
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