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Setting

I. Basic Setup

X, Y topologically mixing 1-step shifts of finite type

π : X → Y 1-block factor map (continuous, shift-commuting)

µ = σ-invariant Borel probability measure on X

ν = πµ on Y : ν(B) = µ(π−1B)
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Sierpinski Carpet
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Sierpinski (or Dean Smith) Carpet
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Nonconformal Carpet

Figure 0: McMullen-type generalized Sierpinski car-
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Nonconformal Carpet Coded
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1

Figure 0: McMullen-type generalized Sierpinski car-
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Disallow some transitions31

0 1 2

3 4 5

Figure 0: Disallow some transitions
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More worn carpet

Figure 0: More worn carpet
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Information Loss

Models information loss, “deterministic noise”:
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Information Loss

Models information loss, “deterministic noise”:

h(πµ) = R(µ) =information transmission rate

b1 ffOO
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a::
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ff

&&MMMMMMMMMMMMM
π // a:: oo // b dd

b2 ff

Ohio State, 4/12/07 – p.9/46



Blackwell

II. Some Bad Examples

Ohio State, 4/12/07 – p.10/46



Blackwell

II. Some Bad Examples

1. Blackwell

b1 2/3ff

a
xx

1/3

2/3

88qqqqqqqqqqqqq
ff

2/3

1/3
&&MMMMMMMMMMMMM

π // a oo // b dd

b2 1/3ff

Ohio State, 4/12/07 – p.10/46



Blackwell

II. Some Bad Examples

1. Blackwell

b1 2/3ff

a
xx

1/3

2/3

88qqqqqqqqqqqqq
ff

2/3

1/3
&&MMMMMMMMMMMMM

π // a oo // b dd

b2 1/3ff

Image measure is not Markov.

Ohio State, 4/12/07 – p.10/46



Blackwell

II. Some Bad Examples

1. Blackwell

b1 2/3ff

a
xx

1/3

2/3

88qqqqqqqqqqqqq
ff

2/3

1/3
&&MMMMMMMMMMMMM

π // a oo // b dd

b2 1/3ff

Image measure is not Markov.

Its entropy is hard to compute.
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Markovian

But
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Markovian

But

b1 1/2ff

a
xx

1/2

1/2

88qqqqqqqqqqqqq
ff

1/2

1/2
&&MMMMMMMMMMMMM

π // a oo 1

1/2
// b 1/2dd

b2 1/2ff

So the code is Markovian:

some Markov measure maps to a Markov measure.
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Shin non-Markovian

2. Shin non-Markovian example: some Markov measure does not lift to a
Markov measure:

2 dd
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Shin non-Markovian

2. Shin non-Markovian example: some Markov measure does not lift to a
Markov measure:

2 dd

X 1
xx

88qqqqqqqqqqqqq
ff

MMMMMMMMMMMMM // 3OO

��

^^

��>
>>

>>
>>

π // 1 oo // 2 dd Y

5 4

Actually no Markov lifts to a Markov.

MPW: Blackwell-type example of a metrically sofic ν on Y that is not the

finite-to-one image of any Markov measure of any order anywhere.
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Walters

3. Walters

X = Y = Σ2 = full 2-shift
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Walters

3. Walters

X = Y = Σ2 = full 2-shift

π(x)0 = x0 + x1 mod 2
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Walters

3. Walters

X = Y = Σ2 = full 2-shift

π(x)0 = x0 + x1 mod 2

2-block recoding:

0077
// 01OO

������
��

��
��

��
��

��
��

�

π // 0:: oo // 1 dd

1177
// 10

^^>>>>>>>>>>>>>>>>>
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Walters–2

Finite-to-one map, hence Markovian
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Walters–2

Finite-to-one map, hence Markovian

Bernoulli 1/2, 1/2 measure on Σ2 is mapped to itself.

Every Markov ν on Y has a unique relatively maximal lift (in fact
unique preimage), which is Markov

For every ergodic ν on Y , all of π−1{ν} consists of relatively maximal
measures over ν, all having the same entropy as ν.

Ohio State, 4/12/07 – p.14/46



Walters—3

If p 6= 1/2, the two measures on X that correspond to B(p, 1 − p) and
B(1 − p, p) both map to νp on Y , which is fully supported.
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B(1 − p, p) both map to νp on Y , which is fully supported.

νp = unique equilibrium state of Vp ∈ C(Y ) on Y (Phelps).

Then {relatively maximal measures over νp} = π−1{νp} =

equilibrium states of Vp ◦ π + G ◦ π = Vp ◦ π (G = 0) (Walters)
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Walters—3

If p 6= 1/2, the two measures on X that correspond to B(p, 1 − p) and
B(1 − p, p) both map to νp on Y , which is fully supported.

νp = unique equilibrium state of Vp ∈ C(Y ) on Y (Phelps).

Then {relatively maximal measures over νp} = π−1{νp} =

equilibrium states of Vp ◦ π + G ◦ π = Vp ◦ π (G = 0) (Walters)

So this potential function Vp ◦ π has many equilibrium states.
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Entropy increase

4. Marcus-P-Williams

For Σ3 → Σ2 as above, there is a 2-step Markov µ that projects to
πµ = B(1/2, 1/2)
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Entropy increase

4. Marcus-P-Williams

For Σ3 → Σ2 as above, there is a 2-step Markov µ that projects to
πµ = B(1/2, 1/2)

while its 1-step Markovization µ1 → πµ1 6= B(1/2, 1/2).

Ohio State, 4/12/07 – p.16/46



Entropy increase

4. Marcus-P-Williams

For Σ3 → Σ2 as above, there is a 2-step Markov µ that projects to
πµ = B(1/2, 1/2)

while its 1-step Markovization µ1 → πµ1 6= B(1/2, 1/2).

Thus h(µ1) > h(µ), while h(πµ1) < h(πµ).
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Let V ∈ C(X) (a potential function)

For each n = 1, 2, · · · and y ∈ Y , let Dn(y) be a set consisting of exactly
one point from each nonempty set [x0 · · ·xn−1] ∩ π−1(y).
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III. Background Concepts

1. Relative pressure 1

Let V ∈ C(X) (a potential function)

For each n = 1, 2, · · · and y ∈ Y , let Dn(y) be a set consisting of exactly
one point from each nonempty set [x0 · · ·xn−1] ∩ π−1(y).

P (π, V )(y) = lim sup
n→∞

1

n
log

[

∑

x∈Dn(y)

exp
(

n−1
∑

i=0

V (σix)
)

]

.
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Relative Entropy

2. Relative entropy 1 (Ledrappier-Walters)
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Relative Entropy

2. Relative entropy 1 (Ledrappier-Walters)

For all y ∈ Y ,

P (π, 0)(y) = lim sup
n→∞

1

n
log

∣

∣Dn(y)
∣

∣

(with V ≡ 0).
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Relative Variational Principle

3. Relative Variational Principle (Ledrappier-Walters)
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Relative Variational Principle

3. Relative Variational Principle (Ledrappier-Walters)

For each ν ∈ M(Y ),

∫

P (π, V ) dν = sup

{

h(µ) +

∫

V dµ

∣

∣

∣

∣

πµ = ν

}

− h(ν).

Ohio State, 4/12/07 – p.19/46



Relative Variational Principle

3. Relative Variational Principle (Ledrappier-Walters)

For each ν ∈ M(Y ),

∫

P (π, V ) dν = sup

{

h(µ) +

∫

V dµ

∣

∣

∣

∣

πµ = ν

}

− h(ν).

In particular, for a fixed ν ∈ M(Y ),

sup{hµ(X |Y ) : πµ = ν} = sup{h(µ) − h(ν) : πµ = ν} =

∫

Y

P (π, 0) dν.
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Relative Pressure—2

4. Relative pressure 2 (P-Shin)
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Relative Pressure—2

4. Relative pressure 2 (P-Shin)

Theorem. For each n = 1, 2, · · · and y ∈ Y let En(y) be a set consisting of exactly

one point from each nonempty cylinder [x0 · · ·xn−1] ⊂ π−1[y0 · · · yn−1].

Then for each V ∈ C(Y ),

P (π, V )(y) = lim sup
n→∞

1

n
log

[

∑

x∈En(y)

exp
(

n−1
∑

i=0

V (σix)
)

]

a.e. with respect to every invariant measure on Y.
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Relative Pressure—2

4. Relative pressure 2 (P-Shin)

Theorem. For each n = 1, 2, · · · and y ∈ Y let En(y) be a set consisting of exactly

one point from each nonempty cylinder [x0 · · ·xn−1] ⊂ π−1[y0 · · · yn−1].

Then for each V ∈ C(Y ),

P (π, V )(y) = lim sup
n→∞

1

n
log

[

∑

x∈En(y)

exp
(

n−1
∑

i=0

V (σix)
)

]

a.e. with respect to every invariant measure on Y.

Thus, we obtain the value of P (π, V )(y) a.e. with respect to every invariant

measure on Y if we delete from the definition of Dn(y) the requirement that

x ∈ π−1(y).
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1.(P-Shin)
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Relative Entropy—2

1.(P-Shin)

A finite-range, combinatorial approach to computing relative entropy:
For µ relatively maximal over ν,

hµ(X |Y ) =

∫

Y

lim
n→∞

1

n
log |π−1[y0 . . . yn−1]| dν(y).
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Relative Entropy—2

1.(P-Shin)

A finite-range, combinatorial approach to computing relative entropy:
For µ relatively maximal over ν,

hµ(X |Y ) =

∫

Y

lim
n→∞

1

n
log |π−1[y0 . . . yn−1]| dν(y).

P (π, 0)(y) = lim sup
n→∞

1

n
log |π−1[y0 . . . yn−1]|

a.e. with respect to every invariant measure on Y .
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Compensation Functions

2. Compensation function (Boyle-Tuncel, Walters)

A continuous function F : X → R such that

PY (V ) = PX(V ◦ π + F ) for all V ∈ C(Y ).
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Compensation Functions

2. Compensation function (Boyle-Tuncel, Walters)

A continuous function F : X → R such that

PY (V ) = PX(V ◦ π + F ) for all V ∈ C(Y ).

Idea: Because π : M(X) → M(Y ) is many-to-one, we always have

PY (V ) = sup{hν(σ) +

∫

Y

V dν : ν ∈ M(Y )}

≤ sup{hµ(σ) +

∫

X

V ◦ π dµ : µ ∈ M(X)}.
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Compensation Functions

2. Compensation function (Boyle-Tuncel, Walters)

A continuous function F : X → R such that

PY (V ) = PX(V ◦ π + F ) for all V ∈ C(Y ).

Idea: Because π : M(X) → M(Y ) is many-to-one, we always have

PY (V ) = sup{hν(σ) +

∫

Y

V dν : ν ∈ M(Y )}

≤ sup{hµ(σ) +

∫

X

V ◦ π dµ : µ ∈ M(X)}.

F takes into account, for all potential functions V on Y at once, the ex-

tra freedom, information, or free energy available in X as compared to Y

because of the ability to move around in fibers over points of Y .
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Properties of Compensation Functions

For SFT’s X and Y , there is always a compensation function.
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Properties of Compensation Functions

For SFT’s X and Y , there is always a compensation function.

The following are equivalent:
1. There are Markov µ, ν with πµ = ν.
2. For every Markov ν on Y there are uncountably many Markov µ

on X with πµ = ν.
3. There is a locally constant compensation function.

π(maxX) = maxY if and only if there is a constant compensation
function.
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Properties of Compensation Functions

For SFT’s X and Y , there is always a compensation function.

The following are equivalent:
1. There are Markov µ, ν with πµ = ν.
2. For every Markov ν on Y there are uncountably many Markov µ

on X with πµ = ν.
3. There is a locally constant compensation function.

π(maxX) = maxY if and only if there is a constant compensation
function.

If G ∈ F(Y ) (Walters class), then G ◦ π is a (saturated) compensation
function if and only if there is c > 0 such that

1

c
≤ eSnG(y) |π−1[y0 . . . yn−1]| ≤ c for all y, n.
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3. Example of a Compensation Function

b1 ff

a
xx

88qqqqqqqqqqqqq
ff

&&MMMMMMMMMMMMM
π // a oo // b dd

b2 ff
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3. Example of a Compensation Function

b1 ff

a
xx

88qqqqqqqqqqqqq
ff

&&MMMMMMMMMMMMM
π // a oo // b dd

b2 ff

G(y) =

{

− log 2 if y = .a . . .

0 if y = .b . . .
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3. Example of a Compensation Function

b1 ff

a
xx

88qqqqqqqqqqqqq
ff

&&MMMMMMMMMMMMM
π // a oo // b dd

b2 ff

G(y) =

{

− log 2 if y = .a . . .

0 if y = .b . . .

e−G(y) measures branching freedom at y (or x).
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3. Example of a Compensation Function

b1 ff

a
xx

88qqqqqqqqqqqqq
ff

&&MMMMMMMMMMMMM
π // a oo // b dd

b2 ff

G(y) =

{

− log 2 if y = .a . . .

0 if y = .b . . .

e−G(y) measures branching freedom at y (or x).

π−1[y0 . . . yn−1| ∼ 2#a ∼ e−SnG(y):
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3. Example of a Compensation Function

b1 ff

a
xx

88qqqqqqqqqqqqq
ff

&&MMMMMMMMMMMMM
π // a oo // b dd

b2 ff

G(y) =

{

− log 2 if y = .a . . .

0 if y = .b . . .

e−G(y) measures branching freedom at y (or x).

π−1[y0 . . . yn−1| ∼ 2#a ∼ e−SnG(y):

When in y we see abk1abk2a . . . abkra, multiply in: 1 at each b, 2 at each a .
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IV. Relatively Maximal Measures

1. The problem:
For fixed ν on Y , look for the µ ∈ π−1ν which have maximal entropy in that
fiber.
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IV. Relatively Maximal Measures

1. The problem:
For fixed ν on Y , look for the µ ∈ π−1ν which have maximal entropy in that
fiber.

Unique? (Shannon-Parry in case Y = {1}.)
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IV. Relatively Maximal Measures

1. The problem:
For fixed ν on Y , look for the µ ∈ π−1ν which have maximal entropy in that
fiber.

Unique? (Shannon-Parry in case Y = {1}.)

No—plenty of examples, including with fully supported ν
(B(p, 1 − p),B(1 − p, p)).
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IV. Relatively Maximal Measures

1. The problem:
For fixed ν on Y , look for the µ ∈ π−1ν which have maximal entropy in that
fiber.

Unique? (Shannon-Parry in case Y = {1}.)

No—plenty of examples, including with fully supported ν
(B(p, 1 − p),B(1 − p, p)).

Theorem (Shin). Suppose that ν ∈ E(Y ) and πµ = ν. Then µ is relatively maximal

over ν if and only if there is V ∈ C(Y ) such that µ is an equilibrium state of V ◦ π.
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Lifting Markov Measures

If there is a locally constant saturated compensation function G ◦ π,
then every Markov measure on Y has a unique relatively maximal lift,
which is Markov, because then the relatively maximal measures over
an equilibrium state of V ∈ C(Y ) are the equilibrium states of
V ◦ π + G ◦ π (Walters).
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Lifting Markov Measures

If there is a locally constant saturated compensation function G ◦ π,
then every Markov measure on Y has a unique relatively maximal lift,
which is Markov, because then the relatively maximal measures over
an equilibrium state of V ∈ C(Y ) are the equilibrium states of
V ◦ π + G ◦ π (Walters).

Further, µX is the unique equilibrium state of the potential function 0
on X ; and the relatively maximal measures over µY are the
equilibrium states of G ◦ π.

Ohio State, 4/12/07 – p.26/46



Only Finitely Many

2. An answer
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Only Finitely Many

2. An answer

Theorem (P-Quas-Shin). For each ergodic ν on Y , there are only a finite number of
relatively maximal measures over ν.

In fact, the number of ergodic invariant measures of maximal entropy in the fiber π−1{ν}
is at most

Nν(π) = min{|π−1{b}| : b ∈ A(Y ), ν[b] > 0}.
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Theorem (P-Quas-Shin). For each ergodic ν on Y , there are only a finite number of
relatively maximal measures over ν.

In fact, the number of ergodic invariant measures of maximal entropy in the fiber π−1{ν}
is at most

Nν(π) = min{|π−1{b}| : b ∈ A(Y ), ν[b] > 0}.

This follows from
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Only Finitely Many

2. An answer

Theorem (P-Quas-Shin). For each ergodic ν on Y , there are only a finite number of
relatively maximal measures over ν.

In fact, the number of ergodic invariant measures of maximal entropy in the fiber π−1{ν}
is at most

Nν(π) = min{|π−1{b}| : b ∈ A(Y ), ν[b] > 0}.

This follows from

Theorem (P-Quas-Shin). For each ergodic ν on Y , any two distinct ergodic measures on

X of maximal entropy in the fiber π−1{ν} are relatively orthogonal.
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Relatively Independent Joining

For µ1, . . . , µn ∈ M(X) with πµi = ν for all i, their relatively independent
joining µ̂ over ν is defined by:
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Relatively Independent Joining

For µ1, . . . , µn ∈ M(X) with πµi = ν for all i, their relatively independent
joining µ̂ over ν is defined by:

if A1, . . . , An are measurable subsets of X and F is the σ-algebra of Y ,
then

µ̂(A1 × . . . × An) =

∫

Y

n
∏

i=1

Eµi
(1Ai

|π−1F) ◦ π−1 dν.
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Relatively Independent Joining

For µ1, . . . , µn ∈ M(X) with πµi = ν for all i, their relatively independent
joining µ̂ over ν is defined by:

if A1, . . . , An are measurable subsets of X and F is the σ-algebra of Y ,
then

µ̂(A1 × . . . × An) =

∫

Y

n
∏

i=1

Eµi
(1Ai

|π−1F) ◦ π−1 dν.

Two measures µ1, µ2 ∈ E(X) with πµ1 = πµ2 = ν are relatively orthogonal
(over ν), µ1 ⊥ν µ2, if

(µ1 ⊗ν µ2){(u, v) ∈ X × X : u0 = v0} = 0.
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Relatively Independent Joining

For µ1, . . . , µn ∈ M(X) with πµi = ν for all i, their relatively independent
joining µ̂ over ν is defined by:

if A1, . . . , An are measurable subsets of X and F is the σ-algebra of Y ,
then

µ̂(A1 × . . . × An) =

∫

Y

n
∏

i=1

Eµi
(1Ai

|π−1F) ◦ π−1 dν.

Two measures µ1, µ2 ∈ E(X) with πµ1 = πµ2 = ν are relatively orthogonal
(over ν), µ1 ⊥ν µ2, if

(µ1 ⊗ν µ2){(u, v) ∈ X × X : u0 = v0} = 0.

There is zero probability of coincidence.
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Proof of First Theorem

3. The second theorem implies the first.
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Proof of First Theorem

3. The second theorem implies the first.

Suppose that we have n > Nν(π) ergodic measures µ1, . . . , µn on X ,
each projecting to ν and each of maximal entropy in the fiber π−1{ν}.
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Proof of First Theorem

3. The second theorem implies the first.

Suppose that we have n > Nν(π) ergodic measures µ1, . . . , µn on X ,
each projecting to ν and each of maximal entropy in the fiber π−1{ν}.

Form the relatively independent joining µ̂ on Xn of the measures µi as
above.
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Proof of First Theorem

3. The second theorem implies the first.

Suppose that we have n > Nν(π) ergodic measures µ1, . . . , µn on X ,
each projecting to ν and each of maximal entropy in the fiber π−1{ν}.

Form the relatively independent joining µ̂ on Xn of the measures µi as
above.

Let b be a symbol in the alphabet of Y such that b has Nν(π) preimages

a1, . . . , aNν(π) under the block map π.
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Pigeonholing

Since n > Nν(π), for every x̂ ∈ φ−1[b] there are i 6= j with (pix̂)0 = (pj x̂)0.
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Pigeonholing

Since n > Nν(π), for every x̂ ∈ φ−1[b] there are i 6= j with (pix̂)0 = (pj x̂)0.

At least one of the sets Si,j = {x̂ ∈ Xn : (pix̂)0 = (pj x̂)0} must have
positive µ̂-measure,
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Pigeonholing

Since n > Nν(π), for every x̂ ∈ φ−1[b] there are i 6= j with (pix̂)0 = (pj x̂)0.

At least one of the sets Si,j = {x̂ ∈ Xn : (pix̂)0 = (pj x̂)0} must have
positive µ̂-measure,

and then also

(µi ⊗ν µj){(u, v) ∈ X × X : πu = πv, u0 = v0} > 0,

contradicting relative orthogonality.
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Pigeonholing

Since n > Nν(π), for every x̂ ∈ φ−1[b] there are i 6= j with (pix̂)0 = (pj x̂)0.

At least one of the sets Si,j = {x̂ ∈ Xn : (pix̂)0 = (pj x̂)0} must have
positive µ̂-measure,

and then also

(µi ⊗ν µj){(u, v) ∈ X × X : πu = πv, u0 = v0} > 0,

contradicting relative orthogonality.

(If you have more measures than preimage symbols, two of those mea-

sures have to coincide on one of the symbols: with respect to each mea-

sure, that symbol a.s. appears infinitely many times in the same place.)
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Interleaving Sequences

Idea of the proof of the second theorem.
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Interleaving Sequences

Idea of the proof of the second theorem.

Writing pi for the projection Xn → X onto the i’th coordinate, we note that
for µ̂-almost every x̂ in Xn, π(pi(x̂)) is independent of i; denote it by φ(x̂).
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Interleaving Sequences

Idea of the proof of the second theorem.

Writing pi for the projection Xn → X onto the i’th coordinate, we note that
for µ̂-almost every x̂ in Xn, π(pi(x̂)) is independent of i; denote it by φ(x̂).

If there two relatively maximal measures over ν which are not relatively
orthogonal, then the measures can be ‘mixed’ to give a measure with
greater entropy.

Ohio State, 4/12/07 – p.31/46



Interleaving Sequences

Idea of the proof of the second theorem.

Writing pi for the projection Xn → X onto the i’th coordinate, we note that
for µ̂-almost every x̂ in Xn, π(pi(x̂)) is independent of i; denote it by φ(x̂).

If there two relatively maximal measures over ν which are not relatively
orthogonal, then the measures can be ‘mixed’ to give a measure with
greater entropy.

We concatenate words from the two processes, using the the fact that the
two measures are supported on sequences that agree infinitely often.
Since X is a 1-step SFT, we can switch over whenever a coincidence
occurs.
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Weaving In More Entropy

Let w ∈ B(1/2, 1/2), symbols 1 and 2.
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Weaving In More Entropy

Let w ∈ B(1/2, 1/2), symbols 1 and 2.

Suppose us = vs, ut = vt, ur = vr, . . . .

u = . . . us . . . ut−1ut . . . ur−1ur . . .

v = . . . vs . . . vt−1vt . . . vr−1vr . . .

w = . . . 1? . . . . . .??2? . . . . . .??1? . . .
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Weaving In More Entropy

Let w ∈ B(1/2, 1/2), symbols 1 and 2.

Suppose us = vs, ut = vt, ur = vr, . . . .

u = . . . us . . . ut−1ut . . . ur−1ur . . .

v = . . . vs . . . vt−1vt . . . vr−1vr . . .

w = . . . 1? . . . . . .??2? . . . . . .??1? . . .

π3 : X × X × B(1/2, 1/2) → X ,
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Weaving In More Entropy

Let w ∈ B(1/2, 1/2), symbols 1 and 2.

Suppose us = vs, ut = vt, ur = vr, . . . .

u = . . . us . . . ut−1ut . . . ur−1ur . . .

v = . . . vs . . . vt−1vt . . . vr−1vr . . .

w = . . . 1? . . . . . .??2? . . . . . .??1? . . .

π3 : X × X × B(1/2, 1/2) → X ,

π3(u, v, w) = . . . (usus+1 . . . ut−1)(vtvt+1 . . . vr−1)(urur+1 . . . ) . . .
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Why Does It Go Up?

The switching increases entropy.
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Why Does It Go Up?

The switching increases entropy.

The argument uses

strict concavity of −t log t

lots of calculations with conditional expectations .
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V. Recognizing the hidden Markov measures

1. Identify images of Markov measures (metrically sofic, hidden Markov).
Heller, Robertson, Furstenberg, Binkowska-Kaminski.
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V. Recognizing the hidden Markov measures

1. Identify images of Markov measures (metrically sofic, hidden Markov).
Heller, Robertson, Furstenberg, Binkowska-Kaminski.

A=free associative algebra over R generated by the alphabet A of Y
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V. Recognizing the hidden Markov measures

1. Identify images of Markov measures (metrically sofic, hidden Markov).
Heller, Robertson, Furstenberg, Binkowska-Kaminski.

A=free associative algebra over R generated by the alphabet A of Y

φ(ǫ) = 1, φ(y1 . . . yn) = ν[y1 . . . yn] extends to linear functional on A.
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Metrically Sofic vs. Finitary

N=largest left ideal in kernel(φ) = {a ∈ A : φ(wa) = 0 for all w ∈ A∗}
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Metrically Sofic vs. Finitary

N=largest left ideal in kernel(φ) = {a ∈ A : φ(wa) = 0 for all w ∈ A∗}

(AZ, ν) is finitary iff the vector space A/N is finite dimensional.
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Metrically Sofic vs. Finitary

N=largest left ideal in kernel(φ) = {a ∈ A : φ(wa) = 0 for all w ∈ A∗}

(AZ, ν) is finitary iff the vector space A/N is finite dimensional.

Heller: Metrically sofic implies finitary, but not conversely.
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Metrically Sofic vs. Finitary

N=largest left ideal in kernel(φ) = {a ∈ A : φ(wa) = 0 for all w ∈ A∗}

(AZ, ν) is finitary iff the vector space A/N is finite dimensional.

Heller: Metrically sofic implies finitary, but not conversely.

Robertson: Mixing and finitary implies K.
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Metrically Sofic vs. Finitary

N=largest left ideal in kernel(φ) = {a ∈ A : φ(wa) = 0 for all w ∈ A∗}

(AZ, ν) is finitary iff the vector space A/N is finite dimensional.

Heller: Metrically sofic implies finitary, but not conversely.

Robertson: Mixing and finitary implies K.

Furstenberg: Characterization of metrically sofic in terms of finite-

dimensionality of a related algebra by a different left ideal.

Ohio State, 4/12/07 – p.35/46



2. Formal languages characterization

Kleene, Schützenberger, Hansel-Perrin, etc.
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2. Formal languages characterization

Kleene, Schützenberger, Hansel-Perrin, etc.
Shift-invariant µ on AN is a function A∗ → R+ or a formal series

∑

w∈A∗

s(w) w.
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∑
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Language ∼ 0, 1-valued formal series
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2. Formal languages characterization

Kleene, Schützenberger, Hansel-Perrin, etc.
Shift-invariant µ on AN is a function A∗ → R+ or a formal series

∑

w∈A∗

s(w) w.

Language ∼ 0, 1-valued formal series
F(A) = set of formal series is a semiring
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2. Formal languages characterization

Kleene, Schützenberger, Hansel-Perrin, etc.
Shift-invariant µ on AN is a function A∗ → R+ or a formal series

∑

w∈A∗

s(w) w.

Language ∼ 0, 1-valued formal series
F(A) = set of formal series is a semiring

(s1s2)(w) =
∑

u,v∈A∗,uv=w

s1(u) s2(v).
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Module structure

F(A) is an R+-module
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Module structure

F(A) is an R+-module

and A∗ acts on F(A) :
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Module structure

F(A) is an R+-module

and A∗ acts on F(A) :

(w, F ) → w−1F =
∑

v∈A∗ F (wv) v

Ohio State, 4/12/07 – p.37/46



Module structure

F(A) is an R+-module

and A∗ acts on F(A) :

(w, F ) → w−1F =
∑

v∈A∗ F (wv) v

(w−1F )(v) = F (wv) for all v ∈ A∗.
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Module structure

F(A) is an R+-module

and A∗ acts on F(A) :

(w, F ) → w−1F =
∑

v∈A∗ F (wv) v

(w−1F )(v) = F (wv) for all v ∈ A∗.

A submodule M ⊂ F(A) is stable if w−1M ⊂ M for all w ∈ A∗.
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Equivalent conditions for metrically sofic

For any F ∈ F(A) that corresponds to a shift-invariant probability
measure µ on AN the following are equivalent:
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Equivalent conditions for metrically sofic

For any F ∈ F(A) that corresponds to a shift-invariant probability
measure µ on AN the following are equivalent:

1. F is linearly representable: there are n ≥ 1, x ∈ R
n
+, y ∈ (Rn

+)∗, and a
morphism φ : A∗ → R

n×n
+ such that

F (w) = xφ(w) y for all w ∈ A∗.
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Equivalent conditions for metrically sofic

For any F ∈ F(A) that corresponds to a shift-invariant probability
measure µ on AN the following are equivalent:

1. F is linearly representable: there are n ≥ 1, x ∈ R
n
+, y ∈ (Rn

+)∗, and a
morphism φ : A∗ → R

n×n
+ such that

F (w) = xφ(w) y for all w ∈ A∗.

2. F is a member of a finitely-generated stable submodule of F(A).
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Equivalent conditions for metrically sofic

For any F ∈ F(A) that corresponds to a shift-invariant probability
measure µ on AN the following are equivalent:

1. F is linearly representable: there are n ≥ 1, x ∈ R
n
+, y ∈ (Rn

+)∗, and a
morphism φ : A∗ → R

n×n
+ such that

F (w) = xφ(w) y for all w ∈ A∗.

2. F is a member of a finitely-generated stable submodule of F(A).

3. F is rational–can be obtained by starting with a finite set of polynomials
(finitely-supported series) and applying finitely many rational operations:
sum, product, multiplication by R+, and f → f∗ =

∑∞

n=0 fn for f(ǫ) = 0.
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Equivalent conditions for metrically sofic

For any F ∈ F(A) that corresponds to a shift-invariant probability
measure µ on AN the following are equivalent:

1. F is linearly representable: there are n ≥ 1, x ∈ R
n
+, y ∈ (Rn

+)∗, and a
morphism φ : A∗ → R

n×n
+ such that

F (w) = xφ(w) y for all w ∈ A∗.

2. F is a member of a finitely-generated stable submodule of F(A).

3. F is rational–can be obtained by starting with a finite set of polynomials
(finitely-supported series) and applying finitely many rational operations:
sum, product, multiplication by R+, and f → f∗ =

∑∞

n=0 fn for f(ǫ) = 0.

4. µ is the image under a 1-block map of a 1-step Markov measure.
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VI. Measures of Maximal Hausdorff Dimension

Find measures of maximal Hausdorff dimension for expanding (not
necessarily conformal) maps on manifolds restricted to compact invariant
sets.
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VI. Measures of Maximal Hausdorff Dimension

Find measures of maximal Hausdorff dimension for expanding (not
necessarily conformal) maps on manifolds restricted to compact invariant
sets.

E.g., Sierpinski carpet type sets studied by McMullen, Bedford, Kenyon,
Gatzouras, Peres.
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VI. Measures of Maximal Hausdorff Dimension

Find measures of maximal Hausdorff dimension for expanding (not
necessarily conformal) maps on manifolds restricted to compact invariant
sets.

E.g., Sierpinski carpet type sets studied by McMullen, Bedford, Kenyon,
Gatzouras, Peres.

Theorem (Shin). If there is a saturated compensation function G ◦ π with G ∈ C(Y ),
then the measures which maximize the weighted entropy functional

φα(µ) =
1

α + 1
[h(µ) + αh(πµ)]

are the equilibrium states for α
α+1G ◦ π.
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VI. Measures of Maximal Hausdorff Dimension

Find measures of maximal Hausdorff dimension for expanding (not
necessarily conformal) maps on manifolds restricted to compact invariant
sets.

E.g., Sierpinski carpet type sets studied by McMullen, Bedford, Kenyon,
Gatzouras, Peres.

Theorem (Shin). If there is a saturated compensation function G ◦ π with G ∈ C(Y ),
then the measures which maximize the weighted entropy functional

φα(µ) =
1

α + 1
[h(µ) + αh(πµ)]

are the equilibrium states for α
α+1G ◦ π.

So in some cases they are unique, Bernoulli, etc.
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Carpets

Ledrappier-Young:

HD(µ) =
hµ(f)

λ1
µ(f)

+

[

1

λ2
µ(f)

−
1

λ1
µ(f)

]

hπµ(f∗)

f∗ =action of f on leaves of strong unstable foliation
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Carpets

Ledrappier-Young:

HD(µ) =
hµ(f)

λ1
µ(f)

+

[

1

λ2
µ(f)

−
1

λ1
µ(f)

]

hπµ(f∗)

f∗ =action of f on leaves of strong unstable foliation

E.g., T (x, y) = (3x, 2y) mod 1 on 2-torus.
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Carpets

Ledrappier-Young:

HD(µ) =
hµ(f)

λ1
µ(f)

+

[

1

λ2
µ(f)

−
1

λ1
µ(f)

]

hπµ(f∗)

f∗ =action of f on leaves of strong unstable foliation

E.g., T (x, y) = (3x, 2y) mod 1 on 2-torus.

Have Σ3 × Σ2, but restrict to subset of 6-element alphabet
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Carpets

Ledrappier-Young:

HD(µ) =
hµ(f)

λ1
µ(f)

+

[

1

λ2
µ(f)

−
1

λ1
µ(f)

]

hπµ(f∗)

f∗ =action of f on leaves of strong unstable foliation

E.g., T (x, y) = (3x, 2y) mod 1 on 2-torus.

Have Σ3 × Σ2, but restrict to subset of 6-element alphabet

Or to SFT—results by Yuki Yayama on existence, uniqueness, properties
of measures of maximal Hausdorff dimension (Gibbs, Bernoulli natural
extension, not Gibbs but strongly mixing, computes HD, etc.)

Uses set-up of Gatzouras-Peres and results of Hofbauer, Markley-Paul (on

grid functions), Walters (Bowen class), Coelho-Quas, ...
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Carpets

Ledrappier-Young:

HD(µ) =
hµ(f)

λ1
µ(f)

+

[

1

λ2
µ(f)

−
1

λ1
µ(f)

]

hπµ(f∗)

f∗ =action of f on leaves of strong unstable foliation

E.g., T (x, y) = (3x, 2y) mod 1 on 2-torus.

Have Σ3 × Σ2, but restrict to subset of 6-element alphabet

Or to SFT—results by Yuki Yayama on existence, uniqueness, properties
of measures of maximal Hausdorff dimension (Gibbs, Bernoulli natural
extension, not Gibbs but strongly mixing, computes HD, etc.)

Uses set-up of Gatzouras-Peres and results of Hofbauer, Markley-Paul (on

grid functions), Walters (Bowen class), Coelho-Quas, ...
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Nonconformal Carpet

Figure 0: McMullen-type generalized Sierpinski car-
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Nonconformal Carpet Coded

0 2

3 4 5

1

Figure 0: McMullen-type generalized Sierpinski car-
Ohio State, 4/12/07 – p.42/46



Disallow some transitions31

0 1 2

3 4 5

Figure 0: Disallow some transitions
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More worn carpet

Figure 0: More worn carpet
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A candidate for nonuniqueness

π(1) = 1, π(2) = π(3) = 2, π(4) = π(5) = 3.

2:: oo // 1OO

��

??

����
��

��
��

��
��

��
��

__

��>
>>

>>
>>

>>
>>

>>
>>

> 2 oo //:: 1OO

��

π //

3
��

:: 4 YY
oo // 5 3 dd

Ohio State, 4/12/07 – p.45/46



VII. Some Questions
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VII. Some Questions

1. Decide when π takes Markov to Markov, Gibbs to Gibbs.
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VII. Some Questions

1. Decide when π takes Markov to Markov, Gibbs to Gibbs.

Chazottes-Ugalde in certain cases find that the image is Gibbs and
identify the potential function.
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VII. Some Questions

1. Decide when π takes Markov to Markov, Gibbs to Gibbs.

Chazottes-Ugalde in certain cases find that the image is Gibbs and
identify the potential function.

2. Construction of relatively maximal measures. Our proof uses relative
g-functions and shows that the measures are relatively Markov:

α ⊥σ−1α∨π−1B(Y ) α∞
2 , Hµ(α|α∞

1 ∨ π−1BY ) = Hµ(α|σ−1α ∨ π−1BY ).

Ohio State, 4/12/07 – p.46/46



VII. Some Questions

1. Decide when π takes Markov to Markov, Gibbs to Gibbs.

Chazottes-Ugalde in certain cases find that the image is Gibbs and
identify the potential function.

2. Construction of relatively maximal measures. Our proof uses relative
g-functions and shows that the measures are relatively Markov:

α ⊥σ−1α∨π−1B(Y ) α∞
2 , Hµ(α|α∞

1 ∨ π−1BY ) = Hµ(α|σ−1α ∨ π−1BY ).

Construct them as weak∗ limits of well-distributed measures on periodic

orbits?

Ohio State, 4/12/07 – p.46/46
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