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The first part of the Nicomachus diagram
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Nicomachus of Gerasa, c. 100
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Nicomachus on Music

THE MANUAL
OF HARMONICS

OF NICOMACHUS THE PYTHAGOREAN

TRANSLATION AND COMMENTARY
BY FLORA R. LEVIN
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Nicole Oresme, c. 1350
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The Nicomachus diagram with added diagonals
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I—Nicomachus and Delannoy Diagrams
LThe diagrams

The Delannoy graph
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The Delannoy graph made into a Bratteli diagram
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LNicomachus and Delannoy Diagrams

LFormulas for Delannoy numbers

Recurrence formula and generating function for
Delannoy numbers

D(n,0) = D(0,n) =1 for all n > 0;
D(n, k) = 0 if either nor k < 0;
D(n,k)=D(n,k —1)+D(n—1,k—1)+ D(n— 1, k) for all n, k.
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LFormulas for Delannoy numbers

Recurrence formula and generating function for
Delannoy numbers

>
D(n,0) = D(0,n) =1 for all n > 0;
D(n, k) = 0 if either nor k < 0;
D(n,k)=D(n,k —1)+D(n—1,k—1)+ D(n— 1, k) for all n, k.
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Assuming n > k
>

Various formulas for Delannoy numbers

D(n,k) = i (k

d
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Various formulas for Delannoy numbers

Assuming n > Kk,

oo -3 ()57 - 52 (5) ()

d=0

:dz;(g)(n:d) =§(kfd)("1d)
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Various formulas for Delannoy numbers

Assuming n > Kk,

oo =3 () (%) -5 ()6
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Asymptotics of Delannoy numbers on the diagonal

D(n,n) ~ (3 +2v2)"(.57v/n — .067n"%/2 4 .006n"°/? + ...)
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Adic systems

» X=compact metric space of infinite paths x = (e;(x) that
begin at the root
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LAdic dynamics

Adic systems

» X=compact metric space of infinite paths x = (e;(x) that
begin at the root

Incoming edges are ordered

Two paths are tail equivalent if they coincide from some
level N on

Then x < y if en(x) < en(y).
Tx = smallest y > x (if there is one).
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LNicomachus adic

Invariant measures for the Nicomachus adic

Theorem

The only ergodic (invariant probability) measures for the
Nicomachus adic dynamical system are the two unique
measures supported on the two boundary odometers.
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Invariant measures for the Nicomachus adic

Theorem

The only ergodic (invariant probability) measures for the
Nicomachus adic dynamical system are the two unique
measures supported on the two boundary odometers.
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Invariant measures for the Delannoy adic

Theorem

The non-atomic ergodic (invariant probability) measures for the
Delannoy adic dynamical system are a one-parameter family
{1a : o € [0,1]} given by choosing nonnegative «, (3,~ with
a+ B+~ =1andpy = a and then putting weight 5 on each
horizontal edge, weight v on each vertical edge, and weight o
on each diagonal edge. (The measure of any cylinder set is
then determined by multiplying the weights on the edges that
define it.)
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The Delannoy adic
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Ingredients of the proofs

» Pemantle-Wilson asymptotics for the Delannoy numbers:

- —k
\/n2+k2—k> n( n2+k2—n)
n

D(n, k) ~ < p

1 nk
21\ (n+ k — V2 + k2)2y/n? + k2’

uniformly if n/k and k/n are bounded.
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» Collision argument based on recurrence of symmetric
random walk in Z?
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Ingredients of the proofs

» Pemantle-Wilson asymptotics for the Delannoy numbers:

- —k
Wukz_k) ”(m_n) §
n

D(n, k) ~ < p

\ﬁ k
21\ (n+ k — V2 + k2)2y/n? + k2’

uniformly if n/k and k/n are bounded.

» Collision argument based on recurrence of symmetric
random walk in Z?

» X. Méla’s isotropy argument
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Total ergodicity of the Delannoy adics

Theorem

With respect to each of its ergodic (invariant probability)
measures, the Delannoy adic dynamical system is totally
ergodic (i.e., has among its eigenvalues no roots of unity
besides 1).
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Total ergodicity of the Delannoy adics

Theorem

With respect to each of its ergodic (invariant probability)
measures, the Delannoy adic dynamical system is totally
ergodic (i.e., has among its eigenvalues no roots of unity
besides 1).

Theorem
Forp prime, r > 0, andn=20,1,2,...,

D(n,p —1) =p (~1)" ™4,
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The Delannoy graph with a “blocking set”
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Remarks and Questions

» For each of its ergodic measures, the Delannoy system is
isomorphic to a subshift on {h, d, v}, given by
concatenating blocks at the vertices, with a shift-invariant
measure.
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Remarks and Questions

» For each of its ergodic measures, the Delannoy system is
isomorphic to a subshift on {h, d, v}, given by
concatenating blocks at the vertices, with a shift-invariant
measure.

» The subshift is topologically weakly mixing.

» With each ergodic measure, the Delannoy adic is loosely
Bernoulli.

» We do not know about limit laws for return times, weak
mixing, multiplicity of the spectrum, or joinings.

» But there is some progress on the complexity and on
generalizing these considerations to a class of systems.
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