# An adic dynamical system related to the Delannoy numbers

Karl Petersen

Department of Mathematics
University of North Carolina at Chapel Hill

Information and Randomness 2010

#### Nicomachus and Delannoy Diagrams

The diagrams
Formulas for Delannoy numbers
Adic dynamics

#### Nicomachus and Delannoy Diagrams

The diagrams
Formulas for Delannoy numbers
Adic dynamics

#### **Invariant Measures**

Nicomachus adic Delannoy adic

#### Nicomachus and Delannoy Diagrams

The diagrams
Formulas for Delannoy numbers
Adic dynamics

#### **Invariant Measures**

Nicomachus adic Delannoy adic

**Total Ergodicity** 

#### Nicomachus and Delannoy Diagrams

The diagrams
Formulas for Delannoy numbers
Adic dynamics

#### **Invariant Measures**

Nicomachus adic

Delannoy adic

**Total Ergodicity** 

# The first part of the Nicomachus diagram



### Nicomachus of Gerasa, c. 100



#### Nicomachus on Music



# Nicole Oresme, c. 1350



Nicomachus and Delannoy Diagrams

#### Oresme



# The Nicomachus diagram with added diagonals



# The Delannoy graph



### The Delannoy graph made into a Bratteli diagram



L The diagrams

# Recurrence formula and generating function for Delannoy numbers

$$D(n,0) = D(0,n) = 1$$
 for all  $n \ge 0$ ;  
 $D(n,k) = 0$  if either  $n$  or  $k < 0$ ;  
 $D(n,k) = D(n,k-1) + D(n-1,k-1) + D(n-1,k)$  for all  $n,k$ .

# Recurrence formula and generating function for Delannoy numbers

$$D(n,0) = D(0,n) = 1$$
 for all  $n \ge 0$ ;  $D(n,k) = 0$  if either  $n$  or  $k < 0$ ;  $D(n,k) = D(n,k-1) + D(n-1,k-1) + D(n-1,k)$  for all  $n,k$ .

$$\sum_{n,k \ge 0} D(n,k) x^n y^k = \frac{1}{1 - (x + y + xy)}$$

Formulas for Delannoy numbers

### Various formulas for Delannoy numbers

Assuming  $n \ge k$ ,

$$D(n,k) = \sum_{d=0}^{k} {k \choose d} {n+k-d \choose k} = \sum_{d=0}^{k} 2^{d} {n \choose d} {k \choose d}$$

### Various formulas for Delannoy numbers

Assuming  $n \ge k$ ,

**•** 

$$D(n,k) = \sum_{d=0}^{k} {k \choose d} {n+k-d \choose k} = \sum_{d=0}^{k} 2^{d} {n \choose d} {k \choose d}$$

**•** 

$$=\sum_{d=0}^{k} \binom{k}{d} \binom{n+d}{k} = \sum_{d=0}^{k} \binom{k}{k-d} \binom{n+d}{k}$$

### Various formulas for Delannoy numbers

Assuming  $n \ge k$ ,

$$D(n,k) = \sum_{d=0}^{k} {k \choose d} {n+k-d \choose k} = \sum_{d=0}^{k} 2^{d} {n \choose d} {k \choose d}$$

$$=\sum_{d=0}^{k} \binom{k}{d} \binom{n+d}{k} = \sum_{d=0}^{k} \binom{k}{k-d} \binom{n+d}{k}$$

$$=\sum_{d=0}^{k}\binom{n+k-d}{k-d}\binom{n}{d}=\sum_{d=0}^{k}\binom{n+d}{d}\binom{n}{k-d}.$$

### Asymptotics of Delannoy numbers on the diagonal

$$D(n,n) \sim (3+2\sqrt{2})^n (.57\sqrt{n}-.067n^{-3/2}+.006n^{-5/2}+\dots).$$

Adic dynamics

# Adic systems

▶ X=compact metric space of infinite paths  $x = (e_i(x))$  that begin at the root

L Adic dynamics

- ▶ X=compact metric space of infinite paths  $x = (e_i(x))$  that begin at the root
- Incoming edges are ordered

- X=compact metric space of infinite paths x = (e<sub>i</sub>(x) that begin at the root
- Incoming edges are ordered
- Two paths are tail equivalent if they coincide from some level N on

- X=compact metric space of infinite paths x = (e<sub>i</sub>(x) that begin at the root
- Incoming edges are ordered
- Two paths are tail equivalent if they coincide from some level N on
- ▶ Then x < y if  $e_N(x) < e_N(y)$ .

- X=compact metric space of infinite paths x = (e<sub>i</sub>(x) that begin at the root
- Incoming edges are ordered
- Two paths are tail equivalent if they coincide from some level N on
- ▶ Then x < y if  $e_N(x) < e_N(y)$ .
- ▶ Tx = smallest y > x (if there is one).

#### Invariant measures for the Nicomachus adic

#### **Theorem**

The only ergodic (invariant probability) measures for the Nicomachus adic dynamical system are the two unique measures supported on the two boundary odometers.

#### Invariant measures for the Nicomachus adic

#### **Theorem**

The only ergodic (invariant probability) measures for the Nicomachus adic dynamical system are the two unique measures supported on the two boundary odometers.



### Invariant measures for the Delannoy adic

#### **Theorem**

The non-atomic ergodic (invariant probability) measures for the Delannoy adic dynamical system are a one-parameter family  $\{\mu_{\alpha}: \alpha \in [0,1]\}$  given by choosing nonnegative  $\alpha,\beta,\gamma$  with  $\alpha+\beta+\gamma=1$  and  $\beta\gamma=\alpha$  and then putting weight  $\beta$  on each horizontal edge, weight  $\gamma$  on each vertical edge, and weight  $\alpha$  on each diagonal edge. (The measure of any cylinder set is then determined by multiplying the weights on the edges that define it.)

└ Delannoy adic

# The Delannoy adic



### Ingredients of the proofs

Pemantle-Wilson asymptotics for the Delannoy numbers:

$$\begin{split} &D(n,k) \sim \left(\frac{\sqrt{n^2+k^2}-k}{n}\right)^{-n} \left(\frac{\sqrt{n^2+k^2}-n}{k}\right)^{-k} \times \\ &\sqrt{\frac{1}{2\pi}} \sqrt{\frac{nk}{(n+k-\sqrt{n^2+k^2})^2 \sqrt{n^2+k^2}}}, \end{split}$$

uniformly if n/k and k/n are bounded.

### Ingredients of the proofs

Pemantle-Wilson asymptotics for the Delannoy numbers:

$$D(n,k) \sim \left(\frac{\sqrt{n^2+k^2}-k}{n}\right)^{-n} \left(\frac{\sqrt{n^2+k^2}-n}{k}\right)^{-k} \times \ \sqrt{\frac{1}{2\pi}} \sqrt{\frac{nk}{(n+k-\sqrt{n^2+k^2})^2\sqrt{n^2+k^2}}},$$

uniformly if n/k and k/n are bounded.

 Collision argument based on recurrence of symmetric random walk in  $\mathbb{Z}^2$ 

### Ingredients of the proofs

Pemantle-Wilson asymptotics for the Delannoy numbers:

$$D(n,k) \sim \left(\frac{\sqrt{n^2 + k^2} - k}{n}\right)^{-n} \left(\frac{\sqrt{n^2 + k^2} - n}{k}\right)^{-k} \times \sqrt{\frac{1}{2\pi}} \sqrt{\frac{nk}{(n + k - \sqrt{n^2 + k^2})^2 \sqrt{n^2 + k^2}}},$$

uniformly if n/k and k/n are bounded.

- Collision argument based on recurrence of symmetric random walk in  $\mathbb{Z}^2$
- X. Méla's isotropy argument

# Total ergodicity of the Delannoy adics

#### **Theorem**

With respect to each of its ergodic (invariant probability) measures, the Delannoy adic dynamical system is totally ergodic (i.e., has among its eigenvalues no roots of unity besides 1).

### Total ergodicity of the Delannoy adics

#### **Theorem**

With respect to each of its ergodic (invariant probability) measures, the Delannoy adic dynamical system is totally ergodic (i.e., has among its eigenvalues no roots of unity besides 1).

#### **Theorem**

For p prime, 
$$r \ge 0$$
, and  $n = 0, 1, 2, ...$ ,

$$D(n, p^r - 1) \equiv_{p} (-1)^{(n \mod p^r)}$$
.

### The Delannoy graph with a "blocking set"



► For each of its ergodic measures, the Delannoy system is isomorphic to a subshift on {*h*, *d*, *v*}, given by concatenating blocks at the vertices, with a shift-invariant measure.

- ► For each of its ergodic measures, the Delannoy system is isomorphic to a subshift on {*h*, *d*, *v*}, given by concatenating blocks at the vertices, with a shift-invariant measure.
- The subshift is topologically weakly mixing.

- ► For each of its ergodic measures, the Delannoy system is isomorphic to a subshift on {*h*, *d*, *v*}, given by concatenating blocks at the vertices, with a shift-invariant measure.
- The subshift is topologically weakly mixing.
- With each ergodic measure, the Delannoy adic is loosely Bernoulli.

- ► For each of its ergodic measures, the Delannoy system is isomorphic to a subshift on {*h*, *d*, *v*}, given by concatenating blocks at the vertices, with a shift-invariant measure.
- The subshift is topologically weakly mixing.
- With each ergodic measure, the Delannoy adic is loosely Bernoulli.
- We do not know about limit laws for return times, weak mixing, multiplicity of the spectrum, or joinings.

- ► For each of its ergodic measures, the Delannoy system is isomorphic to a subshift on {*h*, *d*, *v*}, given by concatenating blocks at the vertices, with a shift-invariant measure.
- The subshift is topologically weakly mixing.
- With each ergodic measure, the Delannoy adic is loosely Bernoulli.
- We do not know about limit laws for return times, weak mixing, multiplicity of the spectrum, or joinings.
- But there is some progress on the complexity and on generalizing these considerations to a class of systems.